ORIGINAL

Effect of FiO₂ in the measurement of VO₂ and VCO₂ using the E-CO VX metabolic monitor

M. Ferreruela, J.M. Raurich*, J.A. Llompart-Pou, A. Colomar, I. Ayestarán

Servei de Medicina Intensiva, Hospital Universitari Son Espases, Palma de Mallorca, Spain

Received 14 October 2016; accepted 14 December 2016
Available online 22 September 2017

KEYWORDS
Oxygen consumption; Carbon dioxide; Pulmonary gas exchange; Mechanical ventilation; Critical illness; Reproducibility of results

Abstract

Objective: We evaluated the effect of changes in FiO₂ on the bias and accuracy of the determination of oxygen consumption (VO₂) and carbon dioxide production (VCO₂) using the E-CO VX monitor in patients with mechanical ventilation.

Design: Descriptive of concordance. Setting: Intensive Care Unit.

Interventions: We measured VO₂ and VCO₂ using the E-CO VX monitor. Values recorded were the average in 5 min. Two groups of 30 patients. We analyzed: 1) the reproducibility in the measurement of VO₂ and VCO₂ at FiO₂ 0.4, and 2) the effect of the changes in FiO₂ on the measurement of VO₂ and VCO₂. Statistical analysis was performed using Bland and Altman test.

Variables of main interest: Bias and accuracy.

Results: 1) FiO₂ 0.4 reproducibility: The bias in the measurement of VO₂ and VCO₂ was 1.6 and 2.1 mL/min, respectively, and accuracy was 9.7 to −8.3% and 7.2 to −5.2%, respectively, and 2) effect of FiO₂ on VO₂: The bias of VO₂ measured at FiO₂ 0.4 and 0.6 was −4.0 mL/min and FiO₂ 0.4 and 0.8 was 5.2 mL/min. Accuracy between FiO₂ 0.4 and 0.6 was 11.9 to −14.1%, and between FiO₂ 0.4 and 0.8 was 43.9 to −39.7%.

Conclusions: The E-CO VX monitor evaluates VO₂ and VCO₂ in critical patients with mechanical ventilation with a clinically acceptable accuracy until FiO₂ 0.6.

© 2017 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

* Please cite this article as: Ferreruela M, Raurich JM, Llompart-Pou JA, Colomar A, Ayestarán I. Efecto de la FiO₂ sobre la medición del VO₂ y la VCO₂ con el monitor metabólico E-CO VX. Med Intensiva. 2017;41:461–467.

* Corresponding author.
E-mail address: joan.raurich@ssib.es (J.M. Raurich).

2173-5727/© 2017 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.
PALABRAS CLAVE
Consumo de oxígeno; Dióxido de carbono; Intercambio pulmonar de gases; Ventilación mecánica; Paciente crítico; Reproducibilidad de resultados

Efecto de la FiO2 sobre la medición del VO2 y la VCO2 con el monitor metabólico E-COVX

Resumen
Objetivo: Valorar el efecto de la FiO2 sobre el sesgo y la precisión en la medición del consumo de oxígeno (VO2) y la producción de dióxido de carbono (VCO2) con el monitor E-COVX en pacientes con ventilación mecánica.

Diseño: Descriptivo de concordancia.

Ámbito: Unidad de Cuidados Intensivos.

Pacientes o participantes: Pacientes con ventilación mecánica.

Intervenciones: Se midieron el VO2 y la VCO2 con el monitor E-COVX. Los valores de VO2 y VCO2 fueron el promedio de 5 min. Dos grupos de 30 pacientes. Se analizó: 1) la reproducibilidad de la medición del VO2 y la VCO2 con una FiO2 de 0,4, y 2) el efecto de los cambios en la FiO2 sobre el VO2 y la VCO2. Análisis estadístico por el método de Bland y Altman.

Variables de interés principales: Sesgo y precisión.

Resultados: 1) Reproducibilidad a una FiO2 de 0,4: los sesgos en la medición del VO2 y la VCO2 fueron de 1,6 y 2,1 mL/min, respectivamente, y los errores en la precisión fueron de 9,7 a –8,3% y de 7,2 a –5,2%, respectivamente, y 2) efecto de la FiO2 sobre el VO2: el sesgo del VO2 medido a una FiO2 de 0,4 y 0,6 fue de –4,0 mL/min y a FiO2 de 0,4 y 0,8, de 5,2 mL/min. La precisión entre FiO2 de 0,4 y 0,6 fue de 11,9 a –14,1%, y entre FiO2 de 0,4 y 0,8, de 43,9 a –39,7%.

Conclusiones: El monitor E-COVX mide el VO2 y la VCO2 en pacientes críticos con ventilación mecánica con un sesgo y una precisión clínicamente aceptables hasta una FiO2 de 0,6.

© 2017 Elsevier España, S.L.U. y SEMICYUC. Todos los derechos reservados.

Introduction

The main interest of measuring oxygen consumption (VO2) and the production of carbon dioxide (VCO2) in critical patients subjected to mechanical ventilation (MV) is to calculate energy expenditure by applying the formula of Weir.1 Recent studies have shown that a calorie supply capable of compensating the losses resulting from energy expenditure shortens the duration of mechanical ventilation, reduces the nosocomial infection rate, facilitates physical recovery and reduces mortality.1-13 The measurement of VO2 and VCO2 also has other applications, however. In effect, the measurement of VO2 allows us to assess the relationship between oxygen transport and VO24 or determine the respiratory effort of a given ventilatory mode with respect to some other mode.7 The measurement of VCO2 in turn allows us to measure the physiological dead space.8

However, the precise measurement of VO2 and VCO2 in the critical patient subjected to mechanical ventilation poses a series of problems including the need for a fraction of inspired oxygen (FiO2) above that of room air, particularly in the acute phase of the disease; airway gas leakage due to the positive pressure of the ventilator; and the presence of water vapor in the expired gas.1,9-11 Of these problems, FiO2 is the most important, since error in the measurement of the concentrations of inspired and expired oxygen in order to determine VO2 is amplified when FiO2 is incremented.11

The measurement of respiratory gas exchange in patients under mechanical ventilation has been facilitated by the development of automated systems capable of measuring VO2 and VCO2 on a breath-to-breath basis. In this regard, some studies have reported that the M-COVX and E-COVX monitors can be used in patients subjected to mechanical ventilation and with a need for high FiO2 (<0.85), with an error acceptable to clinical practice.13-15

The present study was carried out to evaluate the effect of FiO2 upon precision in the measurement of VO2 and VCO2 using the E-COVX metabolic monitor in critical patients subjected to mechanical ventilation.

Material and methods

Patients

The study included patients admitted to the Intensive Care Unit (ICU), intubated and subjected to mechanical ventilation, who were receiving sedatives (midazolam or propofol) and/or analgesics (morphine or fentanyl) in continuous perfusion. Measurements were made of VO2 and VCO2, with the calculation of resting energy expenditure (REE). The study was carried out in the morning, with the patient under resting conditions, the headrest raised 30 degrees, and after two or more days of mechanical ventilation. All the patients were ventilated in volume control mode with FiO2 ≤ 0.4. Before indirect calorimetry measurement, we checked the pressure of the balloon of the endotracheal tube and the absence of air leakage. Indirect calorimetry measurement was carried out during the administration of enteral, parenteral or mixed nutrition, with a calorie supply of 15–30 kcal/kg/day. The nutrition was
administered continuously and was not interrupted, since the increase in VO₂ and VCO₂ is constant and with a value of about 3%. During at least 30 min before the measurements we performed no tracheal aspirations, physiotherapy, postural changes, body hygiene measures, radiological studies or catheter insertions.

The following conditions were regarded as study exclusion criteria: hemodynamic instability (defined as the need to modify vasoactive drug doses or variations >20% in arterial pressure and/or heart rate); a respiratory frequency of over 35 rpm; the need for FiO₂ > 0.4; a body temperature of under 36°C or over 38°C; a sedation level as determined with the Richmond Agitation-Sedation Scale of over –3; patients with bronchopleural fistulas; and patients subjected to renal replacement therapy.

The study was approved by the hospital research committee. Since the study involved a monitoring technique, the need for informed consent was not considered necessary.

E-COVX metabolic monitor

The E-COVX metabolic monitor (GE Healthcare/Datex-Ohmeda, Helsinki, Finland) is a noninvasive system equipped with a paramagnetic analyzer for oxygen, an infrared analyzer for CO₂, and a pneumotachograph for measuring inspired and expired volumes. The pneumotachograph and gas sampling ports were located in a disposable connector called D-Lite sensor (GE Healthcare Finland Oy, Helsinki, Finland), placed between the heat and humidity exchanger (Edith Flex, GE Healthcare Finland Oy, Helsinki, Finland) and the Y-piece of the ventilator circuit, in order to avoid water accumulation. A connector with a dead space of 15 ml (the manufacturer recommended a dead space of 5 ml) was placed between the D-Lite sensor and the Y-piece. The purpose of this dead space was to avoid contamination of the expired gas with the continuous air flow of the ventilator, which was set to minimum (2 l/min).

In order to reduce systematic error in the volume measurements, the E-COVX monitor uses the Haldane transformation to calculate both VO₂ and VCO₂. Systematic error occurs in all the measurements and is inherent to the apparatus itself or to the measurement process. In contrast, random error is accidental, not controllable and can be reduced by increasing the sample size. The Haldane transformation consists of measuring the inspiratory volume and estimating the expiratory volume, since the latter is dependent upon the temperature (assumed to be 35°C) and humidity (assumed to be 100%) of the expired gas.

The signals from the pneumotachograph and gas analyzers were synchronized in order to allow breath-to-breath gas exchange estimates. The results corresponding to VO₂ and VCO₂ were expressed each minute as an average of the last 60 s. The measurements of VO₂ and VCO₂ were recorded only when the patient was metabolically stable (defined as a variation of <5% in 10 consecutive values). The volumes were corrected to standard conditions of temperature, pressure and dryness.

The E-COVX monitor is ready for use 5 min after being turned on, and automatic calibration is performed. The system calibrations are made every 6 months according to the instructions of the manufacturer, who reports a precision of ±10% for FiO₂ < 0.7 and a respiratory frequency of <35 rpm.

Study protocol

Two groups of 30 patients each were studied sequentially and on a non-consecutive basis: in the first group, we assessed the reproducibility of the measurements of VO₂ and VCO₂ at FiO₂ = 0.4, while in the second group we evaluated the effect of the changes in FiO₂ upon the measurements of VO₂ and VCO₂. Each VO₂ and VCO₂ value in the study corresponded to the average of 5 min.

In the first group, 30 min after turning on the E-COVX monitor and with the ventilator set to FiO₂ = 0.4, we recorded body temperature and the VO₂ and VCO₂ values corresponding to 5 min. Data recording was repeated 30 min later in order to establish the reproducibility of the VO₂ and VCO₂ measurements at FiO₂ = 0.4.

In the second group, 30 min after turning on the E-COVX monitor and with the ventilator set to FiO₂ = 0.4, we likewise recorded body temperature and the VO₂ and VCO₂ values corresponding to 5 min. The ventilator was then modified to FiO₂ = 0.6, and after 30 min we again recorded body temperature and the VO₂ and VCO₂ values corresponding to 5 min. Lastly, the process was repeated at FiO₂ = 0.8.

Statistical analysis

The descriptive data included the number and percentage corresponding to categorical variables, and the mean and standard deviation or median and interquartile range (IQR) in the case of continuous variables. The Kolmogorov-Smirnov test was used to assess normal distribution of the data. We used the Student t-test or the Friedman test in application to continuous variables, and the χ² test or the Fisher exact test in the case of categorical variables. The Bland and Altman method was used to determine bias (mean difference between two measurements) and precision as the limits of agreement (twice the standard deviation of the difference between two measurements). Bias (or accuracy) assesses the similarity between the mean values of repeated measurements. Precision (reproducibility or variability) refers to the difference between repeated measurements and assesses the degree of dispersion. In addition, we evaluated absolute agreement between the repeated measurements of VO₂ and VCO₂ using the intraclass correlation coefficient (ICC) with the corresponding 95% confidence interval (95%CI). The error between two measurements was expressed as a percentage of the limits of agreement with respect to the mean value of the two measurements. A priori, an error of < 20% was considered acceptable. Statistical significance was considered for p < 0.05. The data were analyzed using the SPSS, version 19.0 statistical package (SPSS Inc., Chicago, IL, USA).

Results

There were no demographic, clinical or metabolic activity differences (measured by indirect calorimetry) between the two groups (Table 1).
Table 1 Demographic and clinical characteristics, and indirect calorimetry results of the two groups of patients.

<table>
<thead>
<tr>
<th></th>
<th>Group 1 (n = 30)</th>
<th>Group 2 (n = 30)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex, n (%)</td>
<td>20 (66.7)</td>
<td>20 (66.7)</td>
<td>1.0</td>
</tr>
<tr>
<td>Age in years, mean ± SD</td>
<td>53 ± 16</td>
<td>55 ± 13</td>
<td>0.55</td>
</tr>
<tr>
<td>Weight in kg, mean ± SD</td>
<td>81 ± 19</td>
<td>83 ± 19</td>
<td>0.71</td>
</tr>
<tr>
<td>Height in cm, mean ± SD</td>
<td>171 ± 10</td>
<td>169 ± 10</td>
<td>0.42</td>
</tr>
<tr>
<td>Body mass index in kg/m², mean ± SD</td>
<td>27.6 ± 4.8</td>
<td>28.7 ± 5.3</td>
<td>0.40</td>
</tr>
<tr>
<td>Type of patient, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trauma</td>
<td>12 (40.0)</td>
<td>9 (30.0)</td>
<td>0.59</td>
</tr>
<tr>
<td>Medical</td>
<td>14 (46.7)</td>
<td>18 (60.0)</td>
<td></td>
</tr>
<tr>
<td>Surgical</td>
<td>4 (13.3)</td>
<td>3 (10.0)</td>
<td></td>
</tr>
<tr>
<td>Indirect calorimetry, mean ± SD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature, °C</td>
<td>36.5 ± 0.9</td>
<td>36.6 ± 0.9</td>
<td>0.86</td>
</tr>
<tr>
<td>REE, kcal/day</td>
<td>1.917 ± 396</td>
<td>1.907 ± 396</td>
<td>0.92</td>
</tr>
<tr>
<td>REE, kcal/kg/day</td>
<td>24.4 ± 5.3</td>
<td>23.5 ± 4.7</td>
<td>0.52</td>
</tr>
<tr>
<td>REE, %</td>
<td>116 ± 20</td>
<td>116 ± 21</td>
<td>0.93</td>
</tr>
<tr>
<td>RQ</td>
<td>0.71 ± 0.07</td>
<td>0.72 ± 0.07</td>
<td>0.87</td>
</tr>
</tbody>
</table>

SD: standard deviation; REE: resting energy expenditure; RQ: respiratory quotient.

Reproducibility of VO₂ and VCO₂ at FiO₂ = 0.4

There were no significant differences in body temperature, VO₂ or VCO₂ between the first and second indirect calorimetry measurements at FiO₂ = 0.4 (Table 2). The biases between the two measurements of VO₂ and VCO₂ were 1.6 and 2.1 mL/min, respectively (Table 2). The precision for VO₂ was 27.8 to −24.6 mL/min, which represents a percentage error of 9.7 to −8.3%, versus 15.5 to −11.3 mL/min for VCO₂, which represents a percentage error of 7.2 to −5.2% (Fig. 1). The ICC (95%CI) for VO₂ was 0.98 (0.95–0.99), and 0.98 (0.97–0.99) for VCO₂.

Effect of the variation of FiO₂ upon the measurement of VO₂ and VCO₂

There were no significant differences in the values corresponding to body temperature, VO₂ or VCO₂ measured at FiO₂ = 0.4, 0.6 and 0.8 (Table 3). The bias of the VO₂ values measured at FiO₂ = 0.4 and 0.6 was −4.0 mL/min, while at FiO₂ = 0.4 and 0.8 the bias was 5.2 mL/min (Table 3). The precision of the measurements of VO₂ between FiO₂ = 0.4 and 0.6 was 32.2 to −40.2 mL/min, which represents a percentage error of 11.9 to −14.1%. In turn, the precision of the measurements of VO₂ between FiO₂ = 0.4 and 0.8 was 117.2 to −106.8 mL/min, which represents a percentage error of 43.9 to −39.7% (Fig. 2). The ICC (95%CI) for VO₂ measured at FiO₂ = 0.4 and 0.6 was 0.95 (0.90–0.98), versus 0.70 (0.46–0.85) for VO₂ measured at FiO₂ = 0.4 and 0.8.

The bias of the values of VCO₂ measured at FiO₂ = 0.4 and 0.6 was −0.5 mL/min, while at FiO₂ = 0.4 and 0.8 the bias was −0.2 mL/min (Table 3). The precision of the measurements of VCO₂ between FiO₂ = 0.4 and 0.6 was 19.5 to −20.5 mL/min, which represents a percentage error of 9.3 to −9.9%. In turn, the precision of the measurements of VCO₂ between FiO₂ = 0.4 and 0.8 was 27.6 to −28.0 mL/min, which represents a percentage error of 12.4 to −13.2% (Fig. 2). The ICC (95%CI) for VCO₂ measured at FiO₂ = 0.4 and 0.6 was 0.97 (0.94–0.99), versus 0.95 (0.90–0.98) for VCO₂ measured at FiO₂ = 0.4 and 0.8.

Discussion

The results of our study with the E-COVX metabolic monitor reveal good precision at FiO₂ = 0.4 in the measurement of VO₂ and VCO₂. We observed no clinically significant bias in the measurements of VO₂ and VCO₂ over the FiO₂ range of 0.4–0.8. However, precision in the measurement of VO₂ increased on elevating FiO₂ – the situation being clinically inadequate (>20%) with FiO₂ > 0.6. Therefore, in clinical practice we should not use the E-COVX monitor to measure
Effect of FiO₂ in the measurement of VO₂ and VCO₂ using the E-COXV metabolic monitor

However, such an increase in precision in the measurement of VO₂ with increasing FiO₂ values, which is not seen with the measurements of VCO₂, supports the idea that the increase in the precision of VO₂ is due to errors in the measurement of the inspired and expired oxygen concentrations.

Our results contrast with those of other studies that found the measurement of VO₂ with the M-COXX monitor at FiO₂ settings of up to 0.7 and 0.8 to be clinically acceptable. The studies are based on the notion that the E-COXV monitor measures VO₂ and VCO₂ on a breath-to-breath basis for 5 min, which would be the equivalent to about 100 measurements (5 min at 20 rpm). According to the theoretical study of Altman and Burszttein, random error in the measurement of VO₂ would be gradually reduced by increasing the number of measurements. Accordingly, precision is considered to be ±10% when FiO₂ < 0.65, versus ±15% when FiO₂ > 0.65 and <0.85.

The results of our study referred to the precision of the measurement of VO₂ are consistent with the idea that any error in the measurement of oxygen concentration in the inspired and expired gas is amplified when FiO₂ is increased. An error of 1% in the measurement of FiO₂, at FiO₂ = 0.4, results in an error of 15% in the measurement of VO₂. At FiO₂ = 0.8 or higher, the same error of 1% results in an error of ≥100%, and because of this we did not perform measurements with FiO₂ > 0.8. On the other hand, the measurement of REE in patients subjected to mechanical ventilation at FiO₂ > 0.6 remains difficult and should not be made. As expected, the precision in the measurement of VCO₂ showed minimum changes with increments of FiO₂.

The mean respiratory quotient (RQ = 0.72) observed in our series of patients was lower than expected. The RQ in patients subjected to mechanical ventilation under the effects of sedoanalgesia and with enteral, parenteral or mixed nutrition including carbohydrates (50%), lipids (30%) and proteins (20%), should be between 0.8 and 0.9. The most likely explanation for the low RQ would be systematic error in measuring VCO₂. In this sense, Meyer et al. recorded a VCO₂ value with the M-COXX monitor of under 17.6% with respect to the Deltrac II system. The low RQ could also be due to overestimation of VO₂, but this would give rise to a

Figure 1 Graphic representation according to Bland and Altman of the percentage differences in the two consecutive values of VO₂ and VCO₂ of each patient measured at FiO₂ = 0.4 with respect to the mean value of both measurements in mL/min.

Table 3 Bias and precision of the measurement of VO₂ and VCO₂ at FiO₂ = 0.4, 0.6 and 0.8.

<table>
<thead>
<tr>
<th></th>
<th>VO₂ (mL/min)</th>
<th>VCO₂ (mL/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FiO₂ 0.4</td>
<td>283 ± 60</td>
<td>201 ± 41</td>
</tr>
<tr>
<td>FiO₂ 0.6</td>
<td>279 ± 58</td>
<td>201 ± 42</td>
</tr>
<tr>
<td>FiO₂ 0.8</td>
<td>288 ± 83</td>
<td>201 ± 47</td>
</tr>
</tbody>
</table>

FiO₂: fraction of inspired oxygen; VO₂: oxygen consumption; VCO₂: production of carbon dioxide. Data expressed as mean ± standard deviation.
high REE value which we did not observe, since in the formula of Weir for calculating REE, the VO\(_2\) multiplying factor is 3.9, versus 1.1 in the case of VCO\(_2\).\(^1\) The mean REE of our 60 patients was similar to that recorded in other studies in patients with similar demographic characteristics using other measurement methods.\(^2\)\(^5\)\(^7\)

The underestimation of VCO\(_2\) has little impact upon measurement of the REE, but precludes the correct interpretation of RQ in assessing the metabolic substrates. Furthermore, it disables calculation of the physiological dead space. A possible source of systematic error is the continuous flow of the ventilator (Engström Carestation), which could dilute the expired gas. However, and despite increasing the dead space between the D-Lite and the ventilator to 15 ml (the recommended value being 5 ml), we observed no increase in RQ.

The main limitation of our study, apart from its sequential design, is the fact that the measurements of VO\(_2\) and VCO\(_2\) were not compared with another indirect calorimetry method, such as the Douglas bag, particularly for checking the values of VCO\(_2\).

In conclusion, the E-COVX metabolic monitor measures VO\(_2\) in critical patients subjected to mechanical ventilation with clinically acceptable precision to a FiO\(_2\) setting of 0.6. The measurement of VCO\(_2\) is not affected by FiO\(_2\).

Authorship

Mireia Ferreruela: data collection, preparation and review of the manuscript.
Joan Maria Llompart-Pou: literature search, data collection, study design, data analysis, preparation and final review of the manuscript.
Juan Antonio Ayestarán: data collection, preparation and review of the manuscript.
Asunción Colomar: data collection, preparation and review of the manuscript.

Conflicts of interest

The authors declare that they have no conflicts of interest in this study.
References