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Abstract

Introduction:  Sepsis  is  associated  to  a  high  mortality  rate,  and  its  severity  must  be evaluated

quickly. The  severity  of  illness  scores  used  are  intended  to  be  applicable  to  all  patient  popula-

tions, and  generally  evaluate  in-hospital  mortality.  However,  patients  with  sepsis  continue  to

be at  risk  of  death  after  hospital  discharge.

Objective:  To  develop  a  model  for  predicting  1-year  mortality  in  critical  patients  diagnosed

with sepsis.

Patients:  The  data  corresponding  to  5650  admissions  of  patients  with  sepsis  from  the  Medical

Information  Mart  for  Intensive  Care  (MIMIC-III)  database  were  evaluated,  randomly  divided  as

follows: 70%  for  training  and  30% for  validation.

Design: A  retrospective  register-based  cohort  study  was  carried  out.  The  clinical  information  of

the first  24  h  after  admission  was  used  to  develop  a  1-year  mortality  prediction  model  based  on

Stochastic Gradient  Boosting  (SGB)  methodology.  Variable  selection  was  addressed  using  Least

Absolute Shrinkage  and  Selection  Operator  (LASSO)  and  SGB  variable  importance  methodologies.

The predictive  power  was  evaluated  using  the  area  under  the  ROC  curve  (AUROC).

Results: An  AUROC  of  0.8039  (95%  confidence  interval  (CI):  [0.8033  0.8045])  was  obtained  in the

validation subset.  The  model  exceeded  the  predictive  performances  obtained  with  traditional

severity of  disease  scores  in the  same  subset.

Conclusion:  The  use  of  assembly  algorithms,  such  as  SGB,  for  the  generation  of  a  customized

model for  sepsis  yields  more  accurate  1-year  mortality  prediction  than  the  traditional  scoring

systems such  as  SAPS  II, SOFA  or  OASIS.
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Modelo  para  la predicción  de  la  mortalidad  a un  año  en  pacientes  ingresados  en  una

unidad  de  cuidados  intensivos  con  diagnóstico  de sepsis

Resumen

Introducción:  La  sepsis  conlleva  una  elevada  mortalidad,  y  su  gravedad  debe  evaluarse  rápi-

damente.  Los  sistemas  utilizados  para  clasificar  la  intensidad  de la  enfermedad  pretenden  ser

aplicables a  todos  los  pacientes,  y  generalmente  evalúan  la  mortalidad  intrahospitalaria.  Sin

embargo,  los  pacientes  con  sepsis  continúan  estando  en  riesgo  de  muerte  después  del  alta

hospitalaria.

Objetivo:  Desarrollar  un  modelo  para  la  predicción  de la  mortalidad  a  un  año  de  pacientes  en

UCI con  diagnóstico  de sepsis.

Pacientes:  Se evaluaron  los datos  de 5650  admisiones  de  pacientes  con  sepsis  de  la  base

de datos  Medical  Information  Mart  for  Intensive  Care  (MIMIC-III),  los  cuales  fueron  divididos

aleatoriamente  así:  70%  para  entrenamiento  y  30%  para  validación.

Diseño: Estudio  retrospectivo  de cohorte  basado  en  registros.  Se utilizó  la  información  clínica

de  las  primeras  24  horas  después  de  la  admisión  para  desarrollar  un modelo  de predicción  de

mortalidad  a  un  año  basado  en  la  metodología  Stochastic  Gradient  Boosting  (SGB).  La  selección

de variables  se  abordó  utilizando  las metodologías  Least  Absolute  Shrinkage  and  Selection  Oper-

ator  (LASSO)  e importancia  de variables  por  SGB.  El poder  predictivo  del  modelo  fue  evaluado

usando el  AUROC.

Resultados:  Se  obtuvo  un  AUROC  de 0.8039  (intervalo  de confianza  [IC]  del  95%:  [0.8033-

0.8045]).  El modelo  supera  los  resultados  obtenidos  con  algunos  puntajes  tradicionales  en  el

mismo subconjunto  de  validación.

Conclusión:  El uso  de  algoritmos  de ensamblaje,  como  SGB,  para  la  generación  de un  modelo

adaptado  para  la  sepsis,  proporcionan  estimaciones  de mortalidad  a  un  año  más  precisas  que

los sistemas  de  puntuación  tradicionales  como  SAPS  II, SOFA  u OASIS.

© 2018  Elsevier  España,  S.L.U.  y  SEMICYUC.  Todos  los  derechos  reservados.

Introduction

The  vast  amount  of data  obtained  from  a single  patient  in
an  Intensive  Care  Unit  (ICU)  makes  it humanly  impossible
to  organize  and  interpret  it in the required  time,  espe-
cially  to predict  the outcome  of  a patient;  for  this  reason,
different  types  of  indicators  that  synthesize  multiple  phys-
iological  and  demographic  data  into  a single  number  that
represents  the  severity  of the illness  of  a patient  have
been  developed  from  statistical  analysis  of  the  data  col-
lected  for  a  large  number  of patients.  Some  commonly  used
indicators  are  severity-of-disease  classification  systems  as
APACHE  (Acute  Physiology  and  Chronic  Health  Evaluation),
SAPS  (Simplified  Acute  Physiology  Score),  MPM  (Mortality
Prediction  Model),  OASIS  (Oxford  Acute  Severity  of  Illness
Score),  SOFA  (Sequential  Organ  Failure  Assessment),  among
others1; in  general,  there  is  a score that increases  with  the
risk  of  patient  mortality.  These  classification  systems  are
used  to  determine  the risk  in population  studies  conducted
in  an  ICU,  and provide  a  method  for  benchmarking  between
intensive  care  units  of  different  hospitals.  However,  these
indicators  lack  the  precision  required  for  use  at  individual
level,  they  present  significant  errors  at  patient  data  away
from  the  average.  For this reason,  efforts  have  been  made
to  increase  the  performance  of  these indicators  through
the  use  of  computational  techniques  such  as  machine
learning;  in  recent  years,  specific  models  according  to
groups  of  patients  that  shares  a  common  characteristic  (like

diagnostics,  service  type or  a similarity  metric)  have been
created.2,3

Sepsis  is  a  life-threatening  organ dysfunction  due  to  a
dysregulated  host  response  to  infection.  It is  an important
public  health  problem,  which  generates  high  costs  for  the
health  system  and  carries  a  high  morbidity  and mortality  (in-
hospital  mortality  ranged  from  14.7%  to  29.9%  in the  United
States).4

A  model  that  takes  into  account  the  peculiarities  of  sepsis
and  identify  sensitively  and  early  poor patient’s  outcome,
could  become  a  very  useful tool  to  help  the  clinical  group  to
understand  the severity  of  the disease  and  could help  to  the
generation  of  alerts  that  favor  early  onset  of  therapeutic
measures,  thus helping  to  improve  the prognosis  of  patients
with  sepsis  admitted  to  an ICU.

The  performance  of  mortality  prediction  systems  in
patients  with  suspected  sepsis,  severe  sepsis  and  septic
shock  have  been  evaluated  in the ICU,5 customized  versions
for  severe  sepsis  and  septic  shock  of  in-hospital  mortality
classification  systems  have  also  been developed,5,6 and even
particular  models  have  been  created  for  in hospital  mortal-
ity  prediction  of  ICU  patients  with  sepsis,  severe  sepsis  and
septic  shock.7---10

Cited  works  report  better  performance  than  traditionally
severity  of disease  scores  and tend  to  focus  on  the  predic-
tion  of in-hospital  mortality,  however,  long-term  outcomes
from  sepsis  are poorly  understood.  Winters  et al.  concluded
that  patients  with  sepsis  have  ongoing  mortality  beyond
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Table  1  Extracted  data  from  each  admission.

Parameter  Unit

Laboratory  measurements

Platelet  count  109/L

Bilirubin  mg/dL

Creatinine  mg/dL

Fraction of inspired  oxygen  %

Partial pressure  arterial  oxygen  and fraction  of  inspired  oxygen  ratio  Ratio

White blood  cell  count 103/mm3

Potassium mEq/L

Sodium  mEq/L

Bicarbonate  mEq/L

Lactate  mg/dL

Arterial pH  pH

Hematocrit  %

Hemoglobin  mg/dL

Blood urea  nitrogen  mg/dL

Routine charted  data

Temperature ◦C

Heart rate  Bpm

Systolic arterial  blood  pressure  mmHg

Diastolic arterial  blood  pressure  mmHg

Mean arterial  blood  pressure  mmHg

Urine output  mL

Base excess  mEq/L

Glucose mg/dL

Peripheral  capillary  oxygen  saturation  %

Data taken  at  the  time  of  ICU  admission

Gender  Female,  male

Admission  type Medical,  scheduled  surgical

Unscheduled  surgical

Age Years

Glasgow  Coma  Scale  Integer  3---15

Comorbidities

Diabetes Binary  (presence)

Immunosuppressive  diseases

Malignancy

Hematologic  malignancy

Metastatic  cancer

Heart  failure

Pulmonary  diseases

Vascular  diseases

Coronary  diseases

Obesity

Alcohol  abuse

Collagen  diseases

Drug  abuse

Malnutrition

Organ  dysfunction

Cardiovascular Binary  (presence)

Neurologic

Hepatic

Hematologic

Renal

Mechanical ventilation
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short-term,  so  the  use  of  28-day  mortality  or  in-hospital
mortality  as  end  points  for clinical  studies  may  lead  to  inac-
curate  inferences.11 Shankar-Hari  and  Rubenfeld  assert  that
in  the  first  year  following  a  sepsis  episode,  approximately
60%  of  sepsis  survivors  have at least  one  rehospitalization
episode,  which  is  most  often  due  to  infection  and one  in
six  sepsis  survivors  die.12 In  2007  Yende  et  al.  insure  that
long-term  mortality  following  severe  sepsis  is  high,  and
fewer  than  half  of  patients  who  experience  severe  sepsis
are  alive  at  1  year.13 In a  different  study  published  in 2016
Yende  et  al.  studied  the long-Term  Quality  of Life  Among
Survivors  of  Severe  Sepsis and  concluded  that,  among indi-
viduals  enrolled  in the  clinical  trial  who  lived  independently
prior  to  severe  sepsis,  one  third  had died and  of those  who
survived,  a  further  one  third had  not  returned  to  indepen-
dent  living  by  6  months.14

According  to  all  of the above,  the main  objective  of  this
study  is  to develop  a  model  that  goes  beyond  the  prediction
of  in-hospital  mortality,  for this reason,  this paper  presents
the  development  of  a model  for  the  1-year  mortality  predic-
tion  of  sepsis  diagnosed  patients  in an ICU  that  outperforms
commonly  used  severity-of-disease  classification  systems.
This  model  would  help  identify  those  patients  at greatest
risk,  and  will  be  the first  step  to  detect  signs  of  alarm  from
a  worse  outcome  beyond  the  hospital  discharge.

Methods  and  procedures

Data  base

For  this  study  we  used MIMIC-III  (Medical Information  Mart
for  Intensive  Care)  database.  It  is  the latest  version  of
MIMIC,  an  open  database  (https://mimic.physionet.org),
and  the  third  version  was  published  in November  2015.
MIMIC-III  provides  demographic  information,  vital signs mea-
sures,  laboratory  test  results,  drug  information,  procedures,
fluid  balance,  length  of  stay  and  mortality  both  inside
and  outside  the  medical  center.  MIMIC-III  uses  the Social
Security  Administration  Death  Master File  to  obtain  the
Out-of-hospital  mortality  dates.15 MIMIC-III  contains  data

associated  with  58,977  different  hospital  admissions  for
46,520  patients  over 16  years  old  admitted  to  the  ICU  at Beth
Israel Medical  Center  in Boston,  United  States  between  2001
and  2012.15---17

Sepsis  criteria

Traditionally  sepsis  has  been  linked  to  a  systemic  inflam-
matory  response  syndrome  in response  to  an  infectious
process,  and  presented  in three  stages:  sepsis,  severe  sepsis
and  septic  shock.  However,  recently  the  Third  Interna-
tional  Consensus  Definitions  for  Sepsis  and Septic  Shock
has  recommended  the elimination  of the terms  sepsis  syn-
drome,  septicemia,  and  severe  sepsis  and instead  defined
sepsis  as  ‘‘life-threatening  organ  dysfunction  due  to  a
dysregulated  host  response  to  infection’’.  The  consen-
sus, also, proposed  replacing  the  Systemic  inflammatory
response  syndrome  (SIRS)  as  diagnostic  tool,  and substitut-
ing  with  SOFA  for  encounters  in  the ICU,  as  an indicator
of  organ  dysfunction  that helps predict  a poor  prognosis  in
patients.18---20

In  spite of  the rigor  of  the methodology  used  by
the  consensus,  currently,  there  remains  some  controversy
around  the  new  definitions,21---23 since  the  new  definitions
did  not  involve  low  or  middle  income  countries,  and SOFA
is  a score  that  is  routinely  calculated  in  some,  but  not  all,
ICUs.  Even  the  experts  in sepsis  pathobiology  of  the third
international  consensus  recognized  some  limitations  since
some  of  the  definitions  and  clinical  criteria  were  generated
through  voting,  and unanimity  was  not  always  presented.19

Seeking  to  follow  the definition  of  the  consensus,  but
without  forgetting  the doubts  regarding  the new  way  of
doing  the diagnosis,  we  used  the Angus criteria  in  this  study
to  identify ICU  patients  with  sepsis24; therefore,  from  the
58,977  MIMIC-III  admissions,  all  the  ones  that  complying
with  the  following:  (i)  ICD-9-CM  codes  for both  a bacte-
rial  or  fungal  infections  and  a  diagnosis  of  acute  organ
dysfunction  were  selected  and  (ii)  explicit  sepsis  related
diagnosis:  severe  sepsis  or  septic  shock.  15,254  admissions
were  obtained.

180

B
e
a
ts

 p
e
r 

m
in

u
te

1
0

3
/m

m
3

160

140

120

100

80

60

40

20

0

20-10-01

30

25

20

15

10

5

0

21-10-01 22-10-01 23-10-01 24-10-01

Date

Heart rate

White blood cell count

25-10-01 26-10-01 27-10-01

20-10-01 21-10-01 22-10-01 23-10-01 24-10-01 25-10-01 26-10-01 27-10-01

Figure  1  Example  variables.  The  box  represents  the  24-h  window  in which  the  data  are extracted  and  evaluated.
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Working  dataset  and  exclusion  criteria

The  working  dataset  was  extracted  from the 15,254  admis-
sions  with  a diagnosis  of sepsis  according  to  the Angus
criteria;  First,  we  selected  the  admissions  of patients  aged
16 or  older  with  stays longer  than  24  h,  resulting  in a dataset
with  13,836  patients.  Then,  only the admissions  that  had  at
least  70%  of the  laboratory  measurements  and  at least  70%  of
routine  charted  data  presented  in Table 1  were  included  in
the  working  dataset,  getting  5650  admissions  (with  a  1-year
mortality  rate of  43.3%).

The  data  listed  in the first  two  segments  of Table  1 were
extracted  during  the first  24  h  of each admission.  Since
the variables  are  not  measured  with  the same  frequency,
we calculated  statistical  indices  that allowed  their descrip-
tion:  mean,  maximum,  minimum,  variance  and range.  Fig.  1
presents  two  of  the variables  as  an example,  the  24  h  time
window  is also  shown.

The  data  listed  in  the last  three  segments  of  Table  1
represent  single  values  throughout  the entire  duration  of  a
patient  admission;  therefore,  they  do  not require  indicators
for  their  description.

Of  all  variables  listed  in Table  1,  only four  presented  more
than  5%  of  missing  data  being bilirubin  the most  critical  with
34%  of  absent  values,  followed  by  Fraction  of  Inspired  O2
with  15%,  Lactate  with  13%  and Base  excess  with  7%.  The
SGB  algorithm  used  for  the development  of  the model  is
based  on decision  trees,  so  it is  possible  to  handle  missing
values  without  using  imputation.25

Table  2,  presents  the description  of the  admissions
selected  as study cohort  by  first  care  unit  type;  it is  evi-
dent  the  sensitivity  of the condition  of  patients  with  sepsis,
since,  when  compared  to  the  general  MIMIC-III  population,15

they  present  a longer  length  of  stays  (both  ICU  and  hos-
pital)  and  higher  in-hospital  mortality.  Table  2, also  shows
the  1-year  mortality  which  is  almost  twice  the hospital
mortality.

The  study  cohort,  containing  5650  admissions,  was  ran-
domly  divided  into  two  groups:  a train subset  with  3955
admissions  (70%  of the working  set),  and a validation  subset

15254 Admissions with a

diagnosis of sepsis

9604 Excluded

4456 Less than 70% of the

laboratory

measurements

3730 Less than 70% of

routine charted data

1149 Aged <16 years

269 Stay shorter than 24

hours

5650 Admissions included

in the analysis

3955 Admissions in

train subset

1695 Admissions

in validation subset

Figure  2  Accrual  of  admissions  included  in the  study  cohort.

of  1695  admissions.  Fig.  2 presents  the accrual  of  admissions
included  in the  study  cohort.

Model  development

The  data  listed  in  Table  1,  were  converted  into  140 predic-
tors,  115  of  which were the statistical  descriptions  of  the
laboratory  measurements  and  the  routine charted data,  20
were  the presences  of  comorbidities  and organ dysfunctions,
two  were  the  numerical  values  for  age  and  Glasgow  Coma
Score  (GCS),  and 3 corresponded  to  the  gender  and  admis-
sion  type  categorical  data,  since each of  these  variables
were  binarized  using one hot  encoding.

To  select  the most  important  predictors  for  the  1-year
mortality  prediction  model  two  techniques  were  used;  the
first  one  was  Least  Absolute  Shrinkage  and  Selection  Opera-
tor  (LASSO)  based  on maximum  likelihood  logistic  regression;
for  this  methodology  mean  imputation  was  used.  The  second

Table  2  Description  of  the study  cohort.

MIMIC-III  Medical  ICU  Surgical  ICU  Coronary  care  Cardiac  surgery

recovery

Surgical

trauma  ICU

Total

Hospital

admissions

3138  (55.54%)  765  (13.54%)  735  (13.01%)  404 (7.15%)  608 (10.76%)  5650  (100%)

Different ICU  stays  3402  (53.64%)  934  (14.73%)  828  (13.06%)  483 (7.62%)  695 (10.96%)  6342  (100%)

Age, median  years  67.5  64.72  71.75  70.36  61.63  67.54

Gender

(masculine)

1642 (52.32%)  393  (51.37%)  406  (55.23%)  248 (61.38%)  395 (64.96%)  3084  (54.58%)

ICU length  of  stay,

median  days

5.06  6.68  5.81  8  7.88  5.9

Hospital length  of

stay,  median

days

10.29  14.99  10.63  15.88  17.13  11.88

Hospital mortality  757 (24.12%)  165  (21.56%)  168  (22.85%)  76  (18.81%)  111 (18.25%)  1277  (22.6%)

One-year

mortality

1459 (46.49%)  301  (39.34%)  346  (47.07%)  161 (39.85%)  183 (30.09%)  2450  (43.36%)

Abbreviations: MIMIC-III: medical information mart for intensive care, ICU: intensive care unit.
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Figure  3  Model  development.  Stochastic  gradient  boosting  (SGB)  tuning  parameters:  M,  the number  of  trees  that  are aggregated

in the  model;  �,  the  learning  rate  and  L,  the  number  of  splits  performed  on each  tree.  Least  Absolute  Shrinkage  and Selection

Operator (LASSO)  tuning  parameter:  �,  controls  the  controls  the  amount  of  shrinkage  that  is applied  to  the  estimates.
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Figure  4  SGB  relative  importance  of  the  predictors  for  the  1-year  mortality  prediction  model.  Abbreviations:  Bun:  blood  urea
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technique  was  based  on  Stochastic  Gradient  Boosting  (SGB)
variable  importance,  a procedure  that indicates  the  contri-
butions  of  each  of  the  predictors  to  the  model,  therefore
it  is possible  to  choose  the most relevant  predictors  that
represent  the majority  of  the  performance  on  the  model.

Stochastic  gradient  boosting  (SGB)  is a  type  of  ensem-
ble  algorithm.  An  ensemble  algorithms  consist  of multiple
base  models  (Small  decision  trees  for  SGB),  each  one  of

those provides  a  different  solution  to  the problem;  The
solutions  of all  the  base  models,  are  finally  combined  (usu-
ally  by  weighted  voting  or  averaging)  into  a single  final
model  output,  which is usually  a more  stable  and accurate
prediction.  The  SGB  algorithm  involves  a parameter-tuning
process.  the three  main  parameters  are:  M, the number
of trees  that  are  aggregated  in the  model;  �,  the learn-
ing  rate  that helps to  control  over-fitting  by  controlling
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the  gradient  steps  and  L, the  number  of  splits  performed
on  each  Tree.26---28 Least Absolute  Shrinkage  and  Selection
Operator  (LASSO),29 is  a regression  analysis  method  that  per-
forms  both  variable  selection  and  regularization  in order  to
enhance  the prediction  accuracy  and  interpretability  of  the
statistical  model.  LASSO  puts  a  constraint  on  the sum  of the
absolute  values  of  the model  parameters,  applying  a  regu-
larization  process  where  it penalizes  the coefficients  of the
regression  variables  and set  some of  them exactly  to  zero.
In  practice  there  is  tuning  parameter  �, that controls  the
controls  the  amount  of shrinkage  that  is  applied  to the  esti-
mates.  The  SGB  and  LASSO  models  were  implemented  with
R-packages.30---32 A  detailed  description  of  the used  method-
ologies  and  the parameters  tuning  process  is  found  in  the
supplementary  material.

After  the  predictors  were  selected  with  both  methods
five  SGB  models  were  developed,  two  with  the predictors
selected  with  each of  the methods,  one with  the  intersec-
tion  of  the  predictors,  one with  the union  of  the predictors
and  one  with  all the predictors.  To  assess  performance  in  the
five  SGB  models  developed  with  the different  sets of  predic-
tors  and  the  three  severity-of-disease  classification  systems
(SOFA,  SAPS  II  and OASIS)  we  calculate  the  Area  Under  an
ROC  Curve  (AUROC)  using  the PRROC  R  package.33 This  was
repeated  for  5000  random  samples  of  size  320 to  generate
the  distributions  of  metrics  shown  in  a  comparison  boxplot.
The  goodness  of  fit  of the  proposed  SGB  models  was  eval-
uated  over  the  entire  validation  subset  using  the Pearson’s
Chi-square  test,  to measure  the  discrepancy  between  the
observed  and  the predicted  mortality  distribution;  and the
Hosmer---Lemeshow  Test was  used to  assess  whether  or  not
the observed  event  rates match  predicted  event  rates in
subgroups  of increasing  probability  of  the outcome.  Fig.  3
illustrates  the  methodology  that  was  followed  to  develop
the  model.

Results

For  the  model  based  on  all the predictors  the  parameters
that  presented  a better  AUROC  and  an adequate  calibration
were  M  (number  of  trees)  =  1150,  L (number of splits  on  each
tree)  = 9  and  � (learning  rate)  = 0.01.  The  predictive  power
of  the  SGB  model  with  all  the variables  over  the  1695  admis-
sions  of  the  validation  subset  were evaluated  and an  AUROC
of  0.8039  (95%  confidence  interval  (CI):  [0.8033  0.8045])  was
obtained;  with  this  methodology  the relative  influence  of
each  variable  is  scaled  so  that the sum  adds  100,  with  higher
numbers  indicating  stronger  influence  on  the  response,  the
37  most  important  predictors  for the  1-year  mortality  are
presented  in  Fig.  4.

After  applying  LASSO  regularization  process  some  of
the  coefficients  of  the regression  are  set  exactly  to  zero.
Table  3 presents  the LASSO  selected  predictors  (with  shrink-
age  parameter  �  = 0.01288503).  For the SGB  model  with  the
intersection  variables  (18  predictors)  the AUROC  was  0.792
(95%  confidence  interval  (CI):  [0.791  0.793]).  The  other
three  SGB  models  were  not  different  in their  performance
to  the  model  with  all  the variables.

To benchmark  the  proposed  SGB  models,  three  severity-
of-disease  classification  systems  were used  to  evaluate  the
1-year  mortality  on the  same  validation  subset.  The  AUROC

Table  3  LASSO  selected  predictors.

Predictor

Haematologic  malignancy

Metastatic  cancer

Admission  type

Gender

Age

Heart  rate  maximum

Systolic  arterial  blood  pressure  minimum

Systolic  arterial  blood  pressure  maximum

Temperature  minimum

Temperature  maximum

Urine  output

Blood  urea  nitrogen  maximum

White  blood  cell  count  maximum

Bilirubin  maximum

Glasgow  Coma  Scale Minimum

Diastolic  arterial  blood  pressure  minimum

Base excess  maximum

Fraction  of  inspired  oxygen  maximum

Glucose  minimum

Peripheral  capillary  oxygen  saturation  minimum

Peripheral  capillary  oxygen  saturation  mean

Creatinine  maximum

Creatinine  range

Hemoglobin  maximum

Lactate  minimum

Lactate  mean

Platelet  count  maximum

Malignancy

Heart  failure

Vascular

Obesity

Alcohol  abuse

Hypertension

Cardiovascular

Haematologic  dysfunction

Renal  dysfunction

Mechanical  ventilation

values  for  the  reference  scores  were:  OASIS  0.631 (95%
confidence  interval  (CI):  [0.630---0.632]),  SOFA  0.588  (95%
confidence  interval  (CI):  [0.587---0.589])  and  SAPS2  0.702
(95%  confidence  interval  (CI):  [0.701---0.703]).  Fig.  5 presents
the  box  plots  of  the  AUROC  and  the accuracy  of  the  three
reference  severity  of  disease  scores  and  the  SGB  models  with
all  the predictors  and the  intersection  predictors.

The  calibration  of  the proposed  SGB  models  was  adequate
with  p-values  of  0.0916  and  0.127  for the model  with  all
the  variables  and the model  with  the intersection  variables
respectively.  Goodness  of  fit was  also  adequate  (p-values
for  all variables  model:  0.1857  and  p-values  for  intersection
model:  0.9219).

For  SGB  model  with  the  intersection  predictors,  observed
versus  predicted  of  numbers  of  deaths were  compared
graphically  within  deciles  of  increasing  probability  of  the
1-year  mortality  (Fig.  6), and it is  observed  that  esti-
mated  and  observed  mortality  pairs  are  similar  and shows
that  the number  of  outcome  events  is  indeed  increasing
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along  the  probability  deciles.  The  relative  importance  of
the  18  predictors  of the intersection  models  are  listed  in
Table  4. These  predictors  allow  to  identify  features  that
could  become  prognostic  markers  for the 1-year  mortality
of  the  sepsis  diagnosed  patients  within  the ICU  and  could  be
an  input  for  a  new  severity  score  for  patients  with  sepsis  in
the  ICU.

Discussion and conclusions

Accuracy  and AUROC  analysis  over  the validation  data
indicate  that  custom  mortality  prediction  models  for  a spe-
cific  disease  presents  a  better  performance  that  traditional
scores,  which  could  lead  to  better  management  of illness
within  the ICU.  Accuracy  and AUROC  analysis  also  ratify
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Table  4  Relative  importance  of  intersection  model.

Predictor  Relative

importance

Age  17.77

Urine  output  16.17

Blood  urea  nitrogen  maximum  7.28

Metastatic  cancer  5.82

Temperature  maximum  5.03

Bilirubin  maximum  5.01

Hemoglobin  maximum  4.98

Lactate  mean 4.38

Lactate  minimum 4.3

Temperature  minimum 4.1

Platelet  count  maximum  3.81

Glucose  minimum  3.72

Peripheral  capillary  oxygen  saturation  mean  3.53

White  blood  cell  count  minimum  3.47

Systolic  arterial  blood  pressure  maximum  3.43

Malignancy  2.89

Mechanical  ventilation  2.58

Hypertension  1.74

the  complex  interdependence  among  different  physiologi-
cal  systems  in response  to  sepsis,  because  the SGB  models
are  composed  of  between  450 and  1150  trees,  which  are
difficult  to  interpret;  therefore,  it  is  necessary  to  develop
easy-to-use  computer  tools that allow  these  types  of  models
to  be  implemented  within  the ICU.  This  study  indicates  that
it is possible  to  generate  a specific model  for the  prediction
of  mortality  of  patients  admitted  to  an ICU  with  a diagno-
sis  of  sepsis,  that  includes  variables  that  are now  commonly
evaluated  and  been  widely  used.

SGB  variable  importance  and  LASSO  methodologies
allowed  to  develop  models  that  preserve  the same  perfor-
mance  as the  one generated  with  all the predictors  but
with  less  predictors.  Also  the  intersection  of  the  predictors
selected  by  the  two  methods  leads  to  the  development  of  a
much  simpler  model  with  only  18  predictors  and less  trees,
which  also  presents  good  performance.

As  expected,  older  patients  are  at greater  risk  in con-
sequence  the  most  important  parameter  for the outcome
is  the  age.  Urine  output  is  used as  a  marker  of acute  kid-
ney  injury,  a disease  that  is  associated  with  substantial
in-hospital  mortality,  beside  this,  it  is  important  to  note that
it  is  a  relatively  simple  and  widely  used  variable  in the ICU
that  has  a  high relevance  in predicting  1-year  mortality  with
the  SGB  methodology.

Minimum  lactate  over  the first  24  h  of  the ICU  admission
is  the  ninth  most  important  variable  for the  outcome  predic-
tion  in  this  study;  Lactate  is  currently  used  within  the ICU
as  a  diagnostic  tool  and  as  a prognostic  marker,  since  the
higher  the  value,  the  greater  the risk  of  mortality.  However,
if  the  lactate  of a  patient  does  not reach  below  a  thresh-
old,  it  will  also  have  a higher  mortality  risk. For this reason,
the  minimum  lactate  during  the first  24  h  must  also  be ana-
lyzed  in  ICUs.  Mean  lactate  is  also  considered  an important
predictor,  which  agrees  with  what  is  reported  in the  litera-
ture,  since  hyperlactatemia  is  related  with  a poor outcome

in ICU.34 An  elevated  blood  urea  nitrogen  (BUN)  is  associated
with  increased  mortality  in critically  ill patients.35

The  main  objective  of  this  work  is  to present  a  model
for  the  1-year  mortality  prediction  of the  patients  that  are
admitted  in a ICU  with  a sepsis  diagnosis;  and  shows  that
the  use  of  ensemble  based  algorithms  (SGB  in this study)
and  the  inclusion  of statistical  descriptors  that  are  not usu-
ally  taken  into  account  in the  traditional  severity-of-disease
classification  systems  (for  example  mean,  minimum  and
maximum  values  of the same  variable),  improves  the per-
formance  of the  prediction  of  prognosis  models  in patients
admitted  to  an ICU  with  diagnosis  of  sepsis,  however,  this
means  that the  model  can  only  be used after  the first  24  h  of
observation.

Other  limitations  of  this  study  include  the fact  that  it
is  based  on  the data  taken  at only one  institution,  how-
ever,  despite  the  limitation  of being  single-centered,  the
main  advantages  of  MIMIC-III  are that, right  now,  it  is  the
only freely accessible  critical  care  database  of  its  kind,
the  dataset  spans  more  than  a decade  and  it has  detailed
information  about  individual  patient  care  that  includes
time-stamped  nurse-verified  physiological  measurements.
For  this reasons  MIMIC-III  (and specially  it  previous  ver-
sion  MIMIC-II)  are widely  used  internationally.  For  this
study  in particular,  an  important  advantage  is  that besides
in-hospital  mortality,  MIMIC-III  provides  Out-of-hospital  mor-
tality  dates  through  the Social  Security  Administration
Death  Master  File.  On the  other  hand,  there  have  been
few  validated  methods  of  medical  record data  extrac-
tion  for  estimating  sepsis,  particularly  in  this work,  the
Angus  criteria  was  used,  which  is  one of  the  first  protocols
using administrative  data,  and  was  validated  by compar-
ing a  nurse-driven  identification  of  a population  of patients
with  the clinical  syndrome  of  sepsis, however,  Angus  cri-
teria has  shown  to  be  capable  of  capture  most of  the
patients  with  severe  sepsis  but  not exclusively  and  cohorts
identified  by  different  methodologies  (for  instances  Angus
criteria  and  Martin Criteria)  yielded  widely  different  patient
groups.36

It is  also  important  to  note that  the criteria  used to  select
patients  is  based  on the ICD codes,  which  in MIMIC-III  are
generated  for  billing  purposes  at the  end  of the hospital  stay,
hence  it  does  not  guarantee  that patients  suffer  from  sepsis
at  the time  of  admission,  even  so, we  evaluate  the data  of
the  first  24  hours  after  admission  since  we  considered  that
the majority  of  patients  are usually  already  infected  at ICU
admission.

The  emergence  of  machine  learning  techniques  in  the
field  of  health  is  a fact.  Specifically,  in  the  field  of  Intensive
Care,  it is  undeniable  that  the  potential  for  its  application  is
immense.  Specifically,  the use  of assembly  algorithms,  and
in  particular  the  SGB,  allows  the development  of predic-
tion  models,  which  despite  being  complex  show  significantly
better  discrimination  than  traditional  severity  of  disease
scores  (Like  OASIS,  SAPS II  or  SOFA).  This  could  be  explained
by  the fact  that the  base  models  in  the SGB algorithm
are  not fitted  independently,  but  sequentially,  this  mean
that  the subsequent  predictors  are based  on the results  of
previous  predictors,  moreover,  SGB  is  based  on  a steepest
gradient  algorithm  which  places  emphasis  on  misclassified
training  data  that  are  close  to their  correct  classification,
which  reduces  the  number  of  misclassified  observations  and
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facilitates  mortality  prediction  models  to  be  used at  the
individual  level.
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