Early invasive strategy in non-ST-segment elevation acute coronary syndrome. The paradox continues

J. Latour-Pérez a,*, M. P. Fuset-Cabanes b, M. Ruano Marco b, F. del Nogal Sáez c, F.J. Felices Abad d, J. Cuñat de la Hoz b, Grupo ARIAM

a Servicio de Medicina Intensiva, Hospital General Universitario de Elche, Elche, Alicante, Spain
b Servicio de Medicina Intensiva, Hospital La Fe, Valencia, Spain
c Servicio de Medicina Intensiva, Hospital Severo Ochoa, Leganés, Madrid, Spain
d Servicio de Medicina Intensiva, Hospital Reina Sofia, Murcia, Spain

Received 29 August 2011; accepted 14 September 2011
Available online 2 May 2012

KEYWORDS
Acute coronary syndrome;
Angioplasty;
Registries;
Cohort study

Abstract
Objective: Observational studies have reported a paradoxical inverse relationship between the use of an early invasive strategy (EIS) and the risk of events in patients with non-ST-segment elevation acute coronary syndrome (NSTE ACS). The study objectives are: (1) to examine the association between baseline risk in patients with NSTE ACS and the use of EIS; and (2) to identify some of the factors independently associated to the use of EIS.
Design: Retrospective cohort study.
Setting: Intensive care units participating in the SEMICYUC ARIAM Registry.
Patients: Consecutive patients admitted with a diagnosis of NSTE-ACS within 48 h of evolution between the months of April and July 2010.
Interventions: None.
Main outcomes: Coronary angiography with or without angioplasty within 72 h, risk stratification using the GRACE scale.
Results: We analyzed 543 patients with NSTE-ACS, of which 194 were of low risk, 170 intermediate risk and 179 high risk. The EIS was used in 62.4% of the patients at low risk, in 60.2% of those with intermediate risk, and in 49.7% of those at high risk (p for tendency 0.0144). The EIS was used preferentially in patients with low severity and comorbidity. In the logistic regression model, EIS was independently associated to the availability of a catheterization laboratory (OR 2.22 [95%CI 1.55–3.19]), the presence of ST changes on ECG (OR 1.80 [1.23–2.64]), or the existence of a low risk of bleeding (OR 0.76 [0.66–0.88]). Conversely, EIS was less prevalent in patients with diabetes (OR 0.60 [0.41–0.88]) or tachycardia upon admission (OR 0.54 [0.36–0.82]).

Please cite this article as: Latour-Pérez J, et al. Uso de la estrategia invasiva precoz en el síndrome coronario agudo sin elevación de ST. La paradoja continúa. Med Intensiva. 2012;36:95–102.
* Corresponding author.
E-mail address: jlatour@coma.es (J. Latour-Pérez).
© Group ARIAM members are in Annex 1 the end of the article.

2173-5727$ - see front matter © 2011 Elsevier España, S.L. and SEMICYUC. All rights reserved.
Uso de la estrategia invasiva precoz en el síndrome coronario agudo sin elevación de ST. La paradoja continua

Resumen

Objetivo: Algunos estudios observacionales han comunicado una paradojica menor utilización de la estrategia invasiva precoz (EIP) en los pacientes con síndrome coronario agudo sin elevación de ST (SCASEST) de alto riesgo. Los objetivos del estudio son: (1) Examinar la asociación entre el riesgo basal de los pacientes con SCASEST y el uso de una estrategia invasiva precoz (EIP) en la práctica clínica actual; (2) Identificar algunos de los factores asociados de forma independiente con el uso de EIP.

Diseño: Estudio de cohortes retrospectivo

Ámbito: Unidades de cuidados intensivos participantes en el registro ARIAM-SEMICYUC.

Pacientes: Pacientes consecutivos ingresados con diagnóstico de SCASEST de menos de 48 horas de evolución entre los meses de abril-julio de 2010.

Intervenciones: Ninguna.

Variables principales: Realización de coronariografía con o sin angioplastia en las primeras 72 horas, estratificación del riesgo mediante la escala GRACE.

Resultados: Se analizaron 543 pacientes con SCASEST, de los cuales 194 eran de bajo riesgo, 170 de riesgo intermedio y 179 de riesgo alto. La EIP se utilizó en el 62,4% de los pacientes de bajo riesgo, el 60,2% de los de riesgo intermedio y el 49,7% de los de riesgo alto (p para la tendencia 0,0144). La EIP se utilizó de forma preferente en pacientes con baja gravedad y comorbilidad. En el modelo de regresión logística, la EIP se asoció de forma directa con la disponibilidad de laboratorio de hemodinámica (OR 2,22, [intervalo de confianza al 95% 1,55 a 3,19]), la presencia de cambios de ST en el ECG (OR 1,80 [1,23 a 2,64]) y la existencia de un bajo riesgo hemorrágico (OR 0,76 [0,66 a 0,88]). Por el contrario, la EIP se asoció de forma negativa con la presencia de diabetes (OR 0,60 [0,41 a 0,88]) o de taquicardia al ingreso (OR 0,54 [0,36 a 0,82]).

Conclusiones: En el año 2010, persiste una menor utilización relativa de la EIP en los pacientes de alto riesgo, debido en parte al mayor riesgo hemorrágico de estos pacientes.

© 2011 Elsevier España, S.L. y SEMICYUC. Todos los derechos reservados.

Introduction

Based on the existing scientific evidence, the main clinical practice guides recommend an early invasive strategy (EIS) in patients with medium-high risk non-ST-segment elevation acute coronary syndrome (NSTE ACS). However, some registry-based studies have documented a paradoxically lesser utilization of early invasive strategies in high risk patients. The ARIAM-SEMICYUC study offers an opportunity to re-examine this problem based on the recent Spanish data.

The objectives of the present study are: (1) to describe the use of EIS in relation to the baseline risk of patients with NSTE ACS admitted to intensive care units (ICUs); and (2) to identify the independent predictors of the application of EIS in patients admitted due to NSTE ACS.

Methods

Patients

The ARIAM-SEMICYUC project is a voluntary registry of patients with acute coronary syndrome (ACS) admitted to ICUs in Spain and Andorra. At present, trimestral surveying is made, including all the consecutive patients admitted during the time period.

The present study includes the patients admitted with a diagnosis of NSTE ACS with an evolution of at least 48h from symptoms onset, and covering the period between 1 April and 15 July 2010.

During this period, a total of 43 hospitals participated in the survey (see Annex 1), with the inclusion of 1379 patients, of which 665 were admitted with a diagnosis of NSTE ACS. The GRACE score was available in 570 of these patients.

Variables

The primary outcome variable of the study was cardiac catheterization (with or without intervention) in the first 72h after admission.

The patients were stratified according to the risk of suffering major cardiac events, based on the GRACE risk score upon admission, using the cutoff points (low, medium and high risk) pre-established in the literature.

In addition to the risk level, a retrospective analysis was made of different variables available in the registry, such
as the baseline clinical–demographic parameters, patient
treatment and evolution, and possible catheterization pre-
dictors previously described in the literature. Bleeding risk
was quantified by means of an ad hoc index based on
the number of independent predictors of major bleeding
contemplated by the GRACE15,16 categorized as high or
low risk according to the presence of some or no risk
factor.

Statistical analysis

The descriptive analysis comprised the calculation of pro-
portions (in the case of categorical variables) and medians,
with the corresponding interquartile range (in the case of
continuous variables).

The contrasting of hypotheses referred to proportions
was carried out using the χ² test (or the χ² test for
trends). In the case of quantitative variables, contrast-
ing was based on the Mann–Whitney U-test (comparisons
between 2 groups), the Kruskal–Wallis test (3 or more
groups) or the Cuzick test (trends in 3 or more groups). All
contrasts were two-sided, with an alpha level of significance
of 5%.

With the purpose of identifying independent predictors
of early catheterization, the variables found in the univari-
ate analysis to be associated to the adoption of EIS with
p < 0.10 were entered in a multiple logistic regression
model, adopting a backwards stepwise analytical strategy in
which the least significant variable was eliminated in each
step. Finally, the association between each of the predictor
variables and the implementation of EIS was evaluated by
calculating the adjusted odds ratios (ORs) and their corre-
sponding 95% confidence intervals (CI).

Results

The profile of the patients, stratified according to GRACE
risk level, was consistent with that of other registries6,9,11
(Table 1). The high risk group was characterized by older
age, a greater proportion of women, increased comorbid-
ity (diabetes, previous infarction, renal failure), the existence
of heart failure upon admission, a high baseline bleeding
risk, and increased mortality.

Regarding the drug treatment administered from symp-
toms onset and during admission to the ICU (Table 2), the
patients at high risk were less often treated with statins and
beta-blockers, with no other significant differences among
the three risk levels. Likewise, risk level was directly cor-
related to the use of noninvasive mechanical ventilation,
with a negative association to the adoption of EIS—though
the differences failed to reach statistical significance.

The variables associated to the implementation of EIS
are summarized in Table 3. Basically, the group of patients
with NSTE ACS subjected to early invasive treatment were
younger, with a lesser prevalence of diabetes and of heart
failure upon admission, a lesser bleeding risk, and were
admitted to a hospital with the availability of a hemody-
namics laboratory.

The logistic regression analysis (Table 4) identified the
availability of a hemodynamics laboratory, the presence of
ST-segment changes, the absence of diabetes, the absence
of tachycardia upon admission, and the existence of low
bleeding risk as independent predictors of the use of an inva-
sive treatment strategy. Previous coronaryangiography was
not independently correlated to the adoption of EIS (adjusted
OR 0.77, 95% CI 0.50–1.21), and did not act as an effect
modifier of the association between the GRACE level and
the implementation of EIS (interaction p-value = 0.8425).
On replacing heart rate with the Killip class, the presence
of class >1 was found to be significantly associated to
a lesser utilization of invasive strategies (OR 0.64, 95% CI
0.42–0.96).

Discussion

The results of the present study confirm the inverse relation-
ship between the risk of events and the use of an EIS in NSTE
ACS, detected in previous studies.6,8–11,17,18 At first sight this
is paradoxical, since it would indicate that the patients who
could benefit most from such treatment are precisely the
individuals in which it is least used.6–12

The reasons for this paradoxical situation have not been
fully clarified. Given the greater proportion of women and
elderly people in the high risk stratum, the hypo-
thesis of lesser therapeutic effort could be considered in
these individuals.7,17,19,20 However, in our study there were
no other indications of inequalities in therapeutic effort
according to the risk stratum involved (Table 2), and neither
age nor gender were found to be independently associated
to the implementation of EIS.

Given the increased frequency of prior coronaryangiog-
raphy in the patients at high risk, we must consider the
possibility that improved prior knowledge of the coronary
anatomy could have favored the use of a conservative strat-
ey in these patients. However, in the multivariate analysis,
antecedents of coronaryangiography did not act as an effect
modifier (interaction p-value = 0.8425), and were not inde-
pendently associated to the implementation of EIS (adjusted
p-value = 0.2501).

The dose-response association between bleeding risk and
the adoption of EIS is an important finding in this study, sug-
uggesting that the lesser utilization of EIS in the patients with
high GRACE scores is at least partly due to the increased
bleeding risk of these patients. Form this perspective, the
existence of a certain dissociation between the guides
designed in reference to ideal patients, with a single dis-
ease) and actual clinical practice (individual patients with
comorbidities) could be understandable. However, this argu-
ment loses strength on considering the radial access—much
less susceptible to bleeding phenomena than the femoral
access.21–25

The scant utilization of an early invasive strategy in
diabetic patients, reported in many studies,6,7,9,18 is
more difficult to explain. Clinicians may presume the
existence of multiple vessel disease not amenable to
revascularization in diabetic individuals, and therefore an
unfavorable risk-benefit ratio in such cases. However, this
explanation does not fit well with the repeatedly demon-
strated benefits derived from coronary intervention in
diabetics.27–29

The association between tachycardia upon admission
(an indicator of heart failure) and scant interventional
Table 1	Profile of the patients with NSTEMI ACS according to baseline risk.				
	Total	GRACE	p-Value for the trend		
	Low (≤ 108)	Medium (109–140)	High (≥ 141)		
Age: median (P25–P75)	67 (57.77)	54 (47.5, 60.5)	69 (63.76)	77 (72.81)	<0.0001
Females: (%)	138/502 (27.5)	30/181 (16.6)	49/163 (30.1)	59/158 (37.3)	<0.0001
Antecedents					
Active smoker (%)	140/543 (26.8)	100/194 (51.6)	25/170 (14.7)	15/179 (8.4)	<0.0001
Hypertension (%)	281/543 (51.8)	99/194 (51.0)	82/170 (48.2)	100/179 (55.9)	0.3641
Diabetes (%)	353/543 (65.0)	102/194 (52.6)	113/170 (66.5)	138/179 (77.1)	<0.0001
Angina (%)	177/543 (32.6)	43/194 (22.2)	49/170 (28.8)	85/179 (47.5)	<0.0001
Active smoker (%)	108/543 (19.9)	26/194 (13.4)	40/170 (23.5)	42/179 (23.5)	0.0138
Previous infarction (%)	121/543 (22.3)	30/194 (15.5)	35/170 (20.6)	56/179 (31.3)	0.0003
Previous coronary surgery (%)	114/543 (21.0)	27/194 (13.9)	36/170 (21.2)	51/179 (28.5)	0.0006
Previous heart failure (%)	29/543 (5.3)	3/194 (1.6)	3/170 (1.8)	19/179 (10.6)	0.0032
Stroke (%)	34/543 (6.3)	9/194 (4.6)	8/170 (4.7)	17/179 (9.5)	0.0562
Peripheral arterial disease (%)	37/543 (6.8)	6/194 (3.1)	13/170 (7.7)	18/179 (10.1)	0.0075
Chronic renal failure (%)	33/543 (6.1)	2/194 (1.0)	4/170 (2.4)	27/179 (15.1)	<0.0001
Presentation					
Cardiac arrest (%)	8/543 (1.5)	2/194 (1.0)	1/170 (0.6)	5/179 (2.8)	0.1664
Heart rate: median (P25–P75)	78 (66.90)	74.5 (64.84)	74 (65.90)	85 (70.102)	<0.0001
Systolic BP upon admission in ICU median (P25–P75)	140 (120.160)	149.5 (130.170)	140 (121.160)	130 (110.149)	<0.0001
Killip (%)					
I	400/543 (73.7)	184/194 (94.9)	152/170 (89.4)	64/179 (35.8)	
II	100/543 (18.4)	10/194 (5.2)	16/170 (9.4)	74/179 (41.3)	
III–IV	43/543 (7.9)	0/194 (0.0)	2/170 (1.2)	41/179 (22.9)	
Creatinine upon admission: median (P25–P75)	1.0 (0.8. 1.24)	0.96 (0.8. 1.1)	0.96 (0.8. 1.2)	1.15 (0.9. 1.7)	0.3875
High bleeding risk (%)	340/543 (62.6)	55/194 (28.4)	123/170 (72.4)	162/179 (90.5)	<0.0001
ST-segment depression (%)	285/540 (52.8)	74/192 (38.5)	85/169 (50.3)	126/179 (70.4)	<0.0001
Troponin elevation (%)	467/525 (89.0)	158/186 (84.9)	143/166 (89.2)	161/173 (93.1)	0.0142
Availability of hemodynamics (%)	235/543 (43.3)	89/194 (45.9)	72/170 (42.4)	74/179 (41.3)	0.3741
Discharge from ICU					
Death	13/543 (2.4)	0/177 (0.0)	1/159 (0.6)	10/157 (6.4)	<0.0001
Voluntary discharge	3/543 (0.5)	0/177 (0.0)	0/159 (0.0)	2/157 (1.3)	0.135
Other hospital	36/543 (6.7)	13/177 (7.3)	8/159 (5.0)	9/157 (5.7)	0.5236
Ward	491/543 (90.4)	164/177 (92.7)	150/159 (94.3)	136/157 (86.6)	0.0585
Table 2 Drug treatment and diagnostic-therapeutic procedures according to baseline risk during admission to the Intensive Care Unit.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>GRACE Low (<108)</th>
<th>GRACE Medium (109–140)</th>
<th>GRACE High (≥141)</th>
<th>p-Value for the trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin in the first 24h (%)</td>
<td>489/543 (90.1)</td>
<td>179/194 (92.3)</td>
<td>153/170 (90.0)</td>
<td>157/179 (87.7)</td>
<td>0.1419</td>
</tr>
<tr>
<td>Clopidogrel (%)</td>
<td>471/543 (86.7)</td>
<td>171/194 (88.1)</td>
<td>148/170 (87.1)</td>
<td>152/179 (84.9)</td>
<td>0.3607</td>
</tr>
<tr>
<td>Non-fractionated heparin (%)</td>
<td>23/543 (4.2)</td>
<td>8/194 (4.1)</td>
<td>10/170 (5.9)</td>
<td>5/179 (2.8)</td>
<td>0.5434</td>
</tr>
<tr>
<td>LMWH (%)</td>
<td>318/543 (58.6)</td>
<td>117/194 (60.3)</td>
<td>98/170 (57.7)</td>
<td>103/179 (57.5)</td>
<td>0.5837</td>
</tr>
<tr>
<td>Fondaparinux (%)</td>
<td>94/543 (17.3)</td>
<td>36/194 (18.6)</td>
<td>31/170 (18.2)</td>
<td>27/179 (15.1)</td>
<td>0.381</td>
</tr>
<tr>
<td>AG IIb/IIIa (%)</td>
<td>96/543 (17.7)</td>
<td>37/194 (19.1)</td>
<td>36/170 (21.2)</td>
<td>23/179 (12.9)</td>
<td>0.1236</td>
</tr>
<tr>
<td>ACEIs/ARA (%)</td>
<td>304/543 (56.0)</td>
<td>107/194 (55.2)</td>
<td>98/170 (57.7)</td>
<td>99/179 (55.3)</td>
<td>0.9669</td>
</tr>
<tr>
<td>Beta-blockers (%)</td>
<td>277/543 (51.0)</td>
<td>113/194 (58.3)</td>
<td>87/170 (51.2)</td>
<td>77/179 (43.0)</td>
<td>0.0033</td>
</tr>
<tr>
<td>Beta-blockers (excluding contraindication) (%)</td>
<td>276/476 (58.0)</td>
<td>113/178 (63.5)</td>
<td>87/154 (56.5)</td>
<td>76/144 (52.8)</td>
<td>0.0504</td>
</tr>
<tr>
<td>Calcium antagonists (%)</td>
<td>53/543 (9.8)</td>
<td>16/194 (8.3)</td>
<td>17/170 (10.0)</td>
<td>20/179 (11.2)</td>
<td>0.3406</td>
</tr>
<tr>
<td>Statins (%)</td>
<td>445/543 (82.0)</td>
<td>166/194 (85.6)</td>
<td>144/170 (84.7)</td>
<td>135/179 (75.4)</td>
<td>0.0118</td>
</tr>
<tr>
<td>Catheterization <72 h (%)</td>
<td>313/543 (57.6)</td>
<td>121/194 (62.4)</td>
<td>103/170 (60.2)</td>
<td>89/179 (49.7)</td>
<td>0.0144</td>
</tr>
<tr>
<td>CVS (including transfers) (%)</td>
<td>25/543 (4.6)</td>
<td>10/194 (5.2)</td>
<td>9/170 (5.3)</td>
<td>6/179 (3.4)</td>
<td>0.4137</td>
</tr>
<tr>
<td>Early PCI (%)</td>
<td>161/543 (29.7)</td>
<td>62/194 (32.0)</td>
<td>53/170 (31.2)</td>
<td>46/179 (25.7)</td>
<td>0.1905</td>
</tr>
<tr>
<td>Invasive MV (%)</td>
<td>9/543 (1.7)</td>
<td>3/194 (1.6)</td>
<td>0/170 (0.0)</td>
<td>6/179 (3.4)</td>
<td>0.1878</td>
</tr>
<tr>
<td>Noninvasive MV (%)</td>
<td>10/543 (1.8)</td>
<td>1/194 (0.5)</td>
<td>0/170 (0.0)</td>
<td>9/179 (5.0)</td>
<td>0.0014</td>
</tr>
<tr>
<td>Echocardiogram (%)</td>
<td>187/543 (34.4)</td>
<td>66/194 (34.0)</td>
<td>49/170 (28.8)</td>
<td>72/179 (40.2)</td>
<td>0.2239</td>
</tr>
</tbody>
</table>

AG IIb/IIIa: glycoprotein IIb/IIIa antagonists; CVS: cardiovascular surgery; LMWH: low molecular weight heparin; PCI: percutaneous coronary intervention; ACEIs/ARA: angiotensin converting enzyme inhibitors/aldosterone receptor antagonists; MV: mechanical ventilation.

practices is less well known. This association possible may be attributable to chance (type I error). However, the negative association between a Killip class of >1 and the implementation of an early invasive strategy suggests that the association is real. Alternatively, difficulties in transferring unstable patients (within or between hospital centers) to the hemodynamics laboratory, or limitations of therapeutic effort, may possibly contribute to lesser utilization of invasive strategies in these patients.

Table 3 Profile of the patients with/without catheterization in the first 72h (known predictors of catheterization in NSTE ACS).

<table>
<thead>
<tr>
<th>Variable</th>
<th>No early catheterization</th>
<th>EIS</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (4 categories)</td>
<td>70 (61.78)</td>
<td>65 (54.75)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Females (%)</td>
<td>86/257 (33.5)</td>
<td>83/349 (23.8)</td>
<td>0.0086</td>
</tr>
<tr>
<td>Hospital with hemodynamics (%)</td>
<td>81/257 (31.5)</td>
<td>181/349 (51.9)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Bleeding risk factors</td>
<td></td>
<td></td>
<td>0.0001</td>
</tr>
<tr>
<td>0 (%)</td>
<td>70/257 (27.2)</td>
<td>158/349 (45.4)</td>
<td></td>
</tr>
<tr>
<td>1 (%)</td>
<td>68/257 (26.5)</td>
<td>81/349 (23.2)</td>
<td></td>
</tr>
<tr>
<td>2 (%)</td>
<td>61/257 (23.7)</td>
<td>68/349 (19.5)</td>
<td></td>
</tr>
<tr>
<td>3+ (%)</td>
<td>58/257 (22.6)</td>
<td>42/349 (42.0)</td>
<td></td>
</tr>
<tr>
<td>Previous heart failure (%)</td>
<td>26/256 (10.2)</td>
<td>13/349 (3.8)</td>
<td>0.0016</td>
</tr>
<tr>
<td>History of renal failure</td>
<td>21/256 (8.2)</td>
<td>16/349 (4.6)</td>
<td>0.0693</td>
</tr>
<tr>
<td>Initial heart rate</td>
<td>80 (68.96.5)</td>
<td>76 (65.89)</td>
<td>0.0325</td>
</tr>
<tr>
<td>Initial Killip class >1 (%)</td>
<td>94/256 (36.7)</td>
<td>77/349 (22.1)</td>
<td>0.0001</td>
</tr>
<tr>
<td>ST changes (%)</td>
<td>143/233 (61.4)</td>
<td>232/337 (68.8)</td>
<td>0.0646</td>
</tr>
<tr>
<td>Troponin elevation (%)</td>
<td>167/244 (68.4)</td>
<td>224/328 (68.3)</td>
<td>0.9696</td>
</tr>
<tr>
<td>Previous coronaryography (%)</td>
<td>64/256(25)</td>
<td>63/347 (18.2)</td>
<td>0.0416</td>
</tr>
<tr>
<td>Previous stroke (%)</td>
<td>17/256 (6.6)</td>
<td>19/347 (5.5)</td>
<td>0.5506</td>
</tr>
<tr>
<td>Previous infarction (%)</td>
<td>70/256 (27.3)</td>
<td>67/347 (19.3)</td>
<td>0.0199</td>
</tr>
<tr>
<td>Diabetes mellitus (%)</td>
<td>106/256 (41.4)</td>
<td>97/347 (28.0)</td>
<td>0.0006</td>
</tr>
</tbody>
</table>

Invasive strategy in NSTE ACS
In conclusion, there is a tendency to concentrate the utilization of EIS among patients with NSTE ACS exhibiting scant comorbidity. This paradoxical situation is still far from being resolved. Clinicians therefore should carefully revise the risk-benefit relationship of interventionism in their patients, particularly among diabetics, patients with heart failure, and patients at high bleeding risk.

Funding

The ARIAM registry is a project financed by the Sociedad Española de Medicina Intensiva, Crítica y Unidades Coronarias (SEMICYUC).

Conflicts of interest

The authors declare no conflicts of interest.

Annex 1. Investigators and centers participating in the survey 2010

Andalucía: Hospital Nuestra Señora de Valme, Sevilla: Dolores Herrera Rojas, Ana Loza Vázquez, Antonio Campanario García, José Antonio Sánchez Román, María Martín Herrero y Alejandro Ubeda Iglesias. **Andorra:** Hospital de Nuestra Señora de Meritxell, Andorra la Vella: Antoni Margarit Ribas. **Aragón:** Hospital General San Jorge, Huesca: Juan Carlos López Claver, Lorenzo Labarta Monzón, Jesús Escos Orta, Aránzazu Lander Azcona, Carlos Serón Arbeloa, Isabel Garrido Ramírez de Arellano and María Isabel Marquina Lacueva; Hospital Clínico Universitario Lozano Blesa, Zaragoza: Emilia Civeira Murillo, Luis Mariano Giner Smith, Luis Martín Villén; Hospital Maz, Zaragoza: Isabel Yuste Serrano; Hospital Universitario Miguel Servet, Zaragoza: Joaquín Joven Lafont, José Luis Ibáñez Langa and Alejandra Morón. **Navarra:** Hospital Virgen del Camino, Pamplona/Iruña: José Ramos Castro. **Castilla y León:** Hospital Felipe II, Valladolid: Juan José Sanz Hernán; Hospital Universitario del Río Hortega, Valladolid: Marta García García and Rubén Herrán Monge. **Castilla-La Mancha:** Hospital General de Ciudad Real, Ciudad Real: Carmen Martín Rodriguez, Mariana Portilla Botelho and Alfonso Ambros Checa; Hospital Universitario de Guadalajara: Elena Yáñez Parareda; Hospital Santa Bárbara, Puertollano: Francisca Prieto Valderrey and Emilio Moreno Millán. **Catalonia:** Hospital General de L’Hospitalet, L’Hospitalet de Llobregat: José Julián Berrade Zubiri; Hospital de Sabadell, Sabadell: Con-suelo Guia Rambla; Hospital de Sant Boi, Sant Boi de Llobregat: Alejandra Fernández Trujillo; Hospital General de Catalunya, Sant Cugat del Vallés: Elisabet Manero Caballero and Rocío Toledo; Hospital de Terrassa, Terrassa: Joaquín Amador Amerigo. **Valencian Community:** Hospital General Universitario de Alicante, Alicante: José Cánovas Robles, Mónica Díaz Barranco and Francisco Ángel Jaime Sánchez; Hospital Universitario de la Ribera, Alzira: Lucía Arias Portaceli, Ana Abalos García, Martín Parejo Montell and Juan Fernández Cabrera; Hospital General de Castellón, Castel-lón: la Plana: Patricia Casero Roig, Susana Altaba Tena and Amparo Ferrández; Hospital General de Elche, Elche: Jaime Latour Pérez, Eva de Miguel Balsa and Francisco Javier Coves Orts; Hospital de Manises, Manises: Mónica Talavera Peregrina. Hospital Vega Baja, Orihuela: Cristina Portillo Requena; Hospital de Requena, Valencia: Carlos José Folgado Bisbal; Hospital de Sagunto, Sagunto: Regina Calvo Embuena; Hospital Universitario de San Juan de Ali-cante, San Juan de Alicante: Cristina Molla Jiménez; Clínica Quirón de Valencia, Valencia: Javier Tornero López; Hospi-tal Arnau de Vilanova, Valencia: Mercedes García, Moisés Rico Sala, Mercedes García Sanz and Eugenio de la Fuente O’Connor; Hospital Clínico Universitario, Valencia: Ricardo Oltra Chordá; Hospital Universitario La Fe, Valencia: M.ª Paz Fuset Cabanes, Isabel Madrid López, Karla Vacacela Cordova and Esther Villarreal Tello; Hospital de Vinaroz, Vinarós: M.ª Desamparados Oliva Gimeno. **Extremadura:** Hospital San Pedro de Alcántara, Cáceres: Eduardo Corchero, Elena Gallego Curto, Alberto Fernández Zapata and Abilio Arras-quetua Llanes; Hospital Don Benito-Villanueva de la Serena: Juan Diego Jiménez Delgado; Hospital de Mérida, Mérida: Marcelo Pérez Arriaga, Mercedes Antona Diez and Guadalupe Borge Rodríguez; Hospital Virgen del Puerto, Plasencia: Eva Guerra Nevado and Anton Arana Llanderal; Hospital de Zafra, Zafra: Miguel González Lar y Hilario Badi- ola Villa. **Galicia:** Hospital Xeral de Lugo, Lugo: Maria Luisa Martínez Rodríguez and Rebeca Álvarez-Lata; Com-plejo Hospitalario de Ourense: María José de la Torre and Román Rodríguez Álvarez-Granada; Hospital Miguel Dominguez, Pontevedra: Raúl José González González. **La Rioja:** Hospital San Pedro, Logroño: M.ª de la Concepción Pavia Pesquera and Lidia Martínez Camarero. **Madrid:** Hos- pital Universitario Príncipe de Asturias, Alcalá Henares: José Andrés Cambroner Galarce and Cristina Martinez; Hospital del Henares, Coslada: Inés Torrejón Pérez; Hos-pital de Fuenlabrada, Fuenlabrada: Mercedes Rubio Regidor and Febechi Afamefule Afamefule; Hospital Severo Ochoa, Leganés: Frutos del Naval Sáez; Hospital La Moraleja, Madrid: Miguel Ángel Palma Gamiz. **Basque Country:** Hospital de Cruces, Barakaldo: Katherine Garcia Castillo and Victoria Boado Varela. **Asturias:** Hospital San Agustín, Avilés: Josefa Rengel Jiménez. **Murcia:** Hospital Rafael Méndez, Lorca: Carlos Luis Albacete Moreno; Hospital General Universi-tario Reina Sofía, Murcia: Francisco Felices Abad, Isabel Cremades Navalón, Lisa Ortín Katnich, Fátima Martinez-Lozano Aranaga, José Luis Espinoza Berenguel, César Palazón Sánchez, Martin Vigil Velis and Carmen M. Susarte Julià; Hospital J.M. Morales Meseguer, Murcia: Manuel José Párraga Ramirez, José Antonio García Olivas and Jesús Cánovas Vera.
Invasive strategy in NSTE ACS

References

