Intraventricular hemorrhage treated with intraventricular fibrinolysis. A 10-year experience

Servicio de Medicina Intensiva, Hospital Santiago, Vitoria, Spain

Received 24 June 2011; accepted 16 February 2012

KEYWORDS
Intracranial hemorrhage; Ventriculostomy; Fibrinolysis; Urokinase

PALABRAS CLAVE
Hemorragia intracanal; Ventriculostomía;

Abstract
Purpose: We evaluate the results and complications of our intraventricular fibrinolysis protocol. Material and methods: A retrospective analysis was made of the cases of intraventricular hemorrhage with 13-bed Intensive Care Unit. Graeb score 6 or above subjected to intraventricular fibrinolysis. We gathered demographic parameters, clinical risk scores, tomography data and case histories showing neurological status and complications related to intraventricular treatment. The results between those who died and the survivors were compared.

Results: Intraventricular fibrinolysis was performed in 42 patients (69% males) with intraventricular hemorrhage. The average age was 58.36 years (SD 16.67), with a median APACHE II score of 17.5 (r 3–29). A total of 16.7% were receiving acenocoumarol, and 7.1% were on antiplatelet drugs. The median Glasgow Coma Score at the start of treatment was 8 (r 3–13). The median Graeb score was 9 (r 6–12), and was severe (Graeb 9–12) in almost 62%. In turn, 26.2% of the patients developed ventriculitis, and there was further bleeding in 7.1%. Death occurred in 50% of the cases. None of the analyzed variables were significantly related to increased mortality. In the 21 survivors, the Glasgow Outcome Score at 3 months was 2 in 23.8% of the cases, 3 in 28.57%, 4 in 23.8% and 5 in 28.57% of the patients.

Conclusions: Intraventricular fibrinolysis does not appear to involve a high rate of complications, and may result in lesser mortality, with a better functional outcome after three months than that estimated and published in the literature in reference to intraventricular hemorrhage.

© 2011 Elsevier España, S.L. and SEMICYUC. All rights reserved.

Hemorragia intraventricular tratada con fibrinólisis local: experiencia de 10 años

Resumen
Objetivo: Evaluar los resultados y complicaciones de un protocolo de fibrinólisis intraventricular empleado durante 10 años.

* Corresponding author.
E-mail address: sergio.castanoavila@osakidetza.net (S. Castaño Ávila).
Ámbito de aplicación y métodos: Servicio de Medicina Intensiva de 13 camas. Análisis retrospectivo de nuestra base prospectiva de pacientes con hemorragia intraventricular con Graeb mayor de 5 tratados con fibrinólisis intraventricular. Registramos datos demográficos, escala de gravedad, datos tomográficos y evolutivos neurológicos, y complicaciones relacionadas con la fibrinólisis. Comparamos los resultados entre fallecidos y supervivientes.

Resultados: Recibieron fibrinolíticos intraventriculares 42 pacientes (69% varones) con hemorragia intraventricular. La edad media fue 58,36 años (DE 16,67), con una mediana de APACHE II de 17,5 (rango 3-29). El 16,7% tomaban acenocumarol y el 7,1% estaban en tratamiento antiagregante. La mediana del Glasgow Coma Score en el momento de inicio de la fibrinólisis fue de 8 (rango 3-13), y la mediana de Graeb fue 9 (rango 6-12). Más del 62% de las hemorragias fueron clasificadas como graves (Graeb 9-12). Se complicaron con ventriculitis el 26,2% y con sangrado el 7,1%. Falleció el 50% de la serie. Ninguna de las variables analizadas se relacionó de modo significativo con la mortalidad. De los 21 supervivientes, el Glasgow Outcome Score a los 3 meses fue de 2 en el 23,8%, de 3 en el 28,57%, de 4 en el 23,8% y de 5 en el 28,57%.

Conclusiones: La fibrinólisis intraventricular no parece asociar una alta tasa de complicaciones, y puede contribuir a una menor mortalidad con mejor resultado funcional a los 3 meses que la estimada y publicada en la hemorragia intraventricular.

© 2011 Elsevier España, S.L. and SEMICYUC. Todos los derechos reservados.

Introduction

Intraventricular haemorrhage in adults (IVH), both in the primary and the more frequent secondary form, is an entity with a poor prognosis1-12 with mortality rates estimated at 50–80%3,5-9 and a considerable associated morbidity.1-11 By itself it can lead to a communicating hydrocephalus or an obstructive hydrocephalus.1,3,10-12 It frequently requires treatment by the insertion of a ventricular drain to drain away blood or cerebro-spinal fluid. The insertion of drainage alone has not been shown to reduce morbimortality1 and furthermore is not without risks that of ventriculitis being the most important.13-18 Studies have been published that indicate the efficacy of treatment with intraventricular fibrinolysis (IVF) in the increased clearance of the blood, lysis of clots, the reduction of hydrocephalus and even of mortality.1,3-7,11,12,20-22 Such results have been questioned due to methodological problems in the design and performance of the studies.1

Secondary IVH, whose main causes are intraparenchymal haemorrhage (40%) and subarachnoid haemorrhage (15%), has a worse prognosis than the primary.3,16 It has been linked with a greater mortality in advanced age, prior coagulopathy, a score of 8 or less on the Glasgow Coma Scale and the presence of secondary hydrocephalus on admission.10 There is some controversy over whether the extent is correlated with a worse prognosis.10

The purpose of our study was to evaluate from the prognosis standpoint the effectiveness and safety of an IVF protocol in the treatment of IVH.

Material and methods

We carried out descriptive retrospective analysis of all the patients admitted to our General Intensive Care Unit (ICU) with a diagnosis of IVH and treated with IVF between the years 2000 and 2009. The unit is located in a tertiary hospital that has a reference population of 400,000 for neurosurgical procedures. The patients were identified through an in depth review of our prospective database of admissions and discharges.

Graeb Score23 was used to stratify the severity of the IVH. For each lateral ventricle the scoring could be from 1 (with traces of blood) to 4 (full of blood and dilated). Scoring from 1 (with blood) to 2 (full of blood and dilated) was used to measure blood volume in the third and fourth ventricles. Maximum score is 12. IVH was classified in three levels, following recommendations: mild (Graeb score 0–5), moderate (Graeb score 6–8) and severe (Graeb score 9–12). Graeb score over 5 was the beginning criteria for IVF. All consecutive patients with a moderate or severe IVH (with or without hydrocephalus) were treated with IVF and included in the study. For the IVF, 10,000 IU of intraventricular urokinase were administered every 12 h under aseptic conditions. External ventricular drain was only clamped for 1 h after urokinase administration. The external ventricular drains were placed by neurosurgeons in operating room or intensive care unit, and connected to cerebrospinal fluid (CSF) collection system (external ventricular drain system EDS 3; Codman®) and an intracranial pressure transducer (Camino® laboratories; NeuroCare San Diego, USA). CSF samples were routinely sent for culture and biochemical test each 24–48 h. The IVF time was decided jointly between the intensivist and the neurosurgeon according to the clearance of intraventricular blood (Graeb Score 0–5).

Carrying out a review of the clinical histories, we gathered demographic data (age, gender), Glasgow Coma Score (GCS)24 at admission, clinical risk scores (Acute Physiology Score -APACHE II,25 Simplified Acute Physiology Score -SAPS II,26), tomography scores (Graeb Score27) and risk factors for developing a cerebral haemorrhage (history of prior treatment with anti-platelet drugs or anticoagulants, or of hypertension). We recorded the cause of the IVH (primary or secondary), the performance and result of arteriography, the time of ventricular drainage and of IVF and the complications that arose in relation to the use of ventricular drains and their manipulation: ventriculitis, colonisation (defined according to the criteria proposed by previously
published studies13-16, haemorrhage and obstruction. The prognostic outcome was determined using the Glasgow Outcome Score (GOS)17 at three months, and we reviewed the cause of death in those patients who had died.

For the statistical analysis, we used the SPSS 11.0 grad pack for Windows (SPSS\textregistered Inc., Chicago, IL). The continuous variables are expressed as the mean and standard deviation (SD) or median and range (\textit{r}) according to their distribution. The categorical variables are presented as frequencies. We compared the deceased patients with the survivors through the relative risk (RR), the Student’s \textit{t}-test, the Chi-square test and Fisher’s Exact Test as necessary. A value of \(p < 0.05 \) was considered to be statistically significant.

Results

We carried out IVF on 42 patients (69% males), 16 of whom had a moderate IVH 38% and 26 (62%) with a severe IVH according to Graeb’s grading system. Almost 19% were primary IVH and the remainder secondary. The aetiology was traumatic in 4.8%, secondary to an SAH in 7.1%, and 88.1% were secondary to other haemorrhagic CVAs. The median Graeb score was 9 (range 6–12). The cerebral arteriography was performed in 21 patients; we found 10 with arteriovenous malformations, 6 with aneurysms and 5 with normal test.

Characteristics of the group studied

We have summarised the general characteristics of the group and the differences between those who died and the survivors in Table 1. The average age was 58.36 years (SD 16.67), with a median of APACHE II of 17.5 (range 3–29), and median SAPS of 39 (range 7–68). We found 16.7% were taking acenocoumarol and 7.1% anti-platelet agents. There was a history of hypertension in 38.1%.

Clinically, at the beginning of IVF, patients’ median GCS was 8 (range of 3–13) and received intraventricular fibrinolysis for a median time of 6 days (range 1–21). We placed 57 external ventricular drains (two in 15 patients), with a median shunt time of 12.5 days (range 1–33).

Progress and risk factors

During the first three months, 21 patients died (50%): 17 in the general ICU (9 of them from neurological causes and the rest due to septic or respiratory complications), 3 in the neurosurgical ward (1 from neurological deterioration, another from bronchoaspiration and the third from pneumonia with multiorgan failure), and lastly, another patient died following neurological deterioration in a centre for chronic patients in the second month after the ICU admission (Table 2).

We did not find statistically significant differences between those who died and the survivors in any of the variables studied, although the greater age of those in the first

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Characteristics of the group studied.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Gender (m:w)</td>
<td>29:13</td>
</tr>
<tr>
<td>AGE (years)</td>
<td>58.36 (16.67)</td>
</tr>
<tr>
<td>APACHE II score</td>
<td>16.76 (5.68)</td>
</tr>
<tr>
<td>SAPS II</td>
<td>37.07 (12.38)</td>
</tr>
<tr>
<td>GCS start of IVF</td>
<td>8.07 (2.61)</td>
</tr>
<tr>
<td>GRAEB score</td>
<td>8.98 (1.66)</td>
</tr>
<tr>
<td>Time EVD (days)</td>
<td>13.93 (7.19)</td>
</tr>
<tr>
<td>Number EVD</td>
<td>1.36 (0.48)</td>
</tr>
<tr>
<td>Days de IVF</td>
<td>6.74 (4.17)</td>
</tr>
<tr>
<td>Alt haemostasis (n)</td>
<td>10</td>
</tr>
<tr>
<td>IVH: primary/secondary</td>
<td>8/34</td>
</tr>
<tr>
<td>Context of IVH (n)</td>
<td>37</td>
</tr>
<tr>
<td>IP/IV CVA</td>
<td>37</td>
</tr>
<tr>
<td>SAH</td>
<td>3</td>
</tr>
<tr>
<td>Trauma</td>
<td>2</td>
</tr>
</tbody>
</table>

m: men; w: women. GCS: Glasgow Coma Score; IVF: intraventricular fibrinolysis; Time EVD: days with external ventricular drainage; Alt haemostasis: treatment with acenocoumarol or with anti-platelet drugs; IVH: intraventricular haemorrhage; Context of IVH: with relation to IP/IV CVA: intraparenchymal/intraventricular cerebrovascular accident, SAH: subarachnoid haemorrhage. Comparison tests (Student’s \textit{t}-test, Pearson’ Chi-square test, and Fisher’s Exact Test according to the type of variable) of averages or frequencies with a significance level of \(p < 0.05 \).

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Progress.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause of death</td>
<td>Frequency (percentage)</td>
</tr>
<tr>
<td>Brain death (B.D.)</td>
<td>2 (9.5)</td>
</tr>
<tr>
<td>Neurological deterioration without B.D.</td>
<td>4 (19.04)</td>
</tr>
<tr>
<td>Life sustaining-treatment limitation</td>
<td>5 (23.8)</td>
</tr>
<tr>
<td>Pneumonia with multiorgan failure</td>
<td>8 (38.09)</td>
</tr>
<tr>
<td>Bronchoaspiration</td>
<td>1 (4.7)</td>
</tr>
<tr>
<td>Intestinal perforation with peritonitis</td>
<td>1 (4.7)</td>
</tr>
</tbody>
</table>
Prophylaxis and antimicrobial treatment

The prophylaxis and antimicrobial treatment of bacterial meningitis is a critical aspect of its management. Prophylaxis aims to prevent the development of meningitis, whereas antimicrobial treatment is essential for the treatment of established meningitis.

Prophylaxis

Prophylaxis is recommended for high-risk groups, including newborns, immunocompromised patients, and individuals with certain medical conditions (e.g., heart valve prostheses). The choice of prophylactic medication depends on the age of the patient and the specific risk factors.

Antimicrobial Treatment

The initial treatment of bacterial meningitis should be initiated as soon as the diagnosis is suspected. The choice of antimicrobial agents is based on the causative organism and the sensitivity profile.

Commonly used agents include antibiotics such as ceftriaxone, cefotaxime, ceftazidime, and vancomycin. The duration of treatment varies depending on the causative organism and the clinical response.

Complications

Complications of bacterial meningitis can be severe and include brain damage, deafness, seizures, and developmental delays. Early and appropriate treatment is crucial to minimize these complications.

Prognosis

The prognosis for bacterial meningitis is variable and depends on several factors, including the causative organism, the age of the patient, and the severity of the illness. Mortality rates can range from 5% to 50%, with the highest risk being in the first week after diagnosis.

Conclusion

Bacterial meningitis is a serious and potentially life-threatening condition that requires prompt diagnosis and treatment. Early recognition, appropriate prophylaxis, and timely antimicrobial therapy can significantly improve outcomes. Regular monitoring and management of complications are essential for achieving the best possible outcome for patients.
in our patients. Having a protocol for neurocritical patient care, the use fibrinolytic therapy and the fact that our review has not analysed the prognosis beyond the first three months may explain this difference. The prognosis we have observed is encouraging; in the survivors, the neurological situation at three months is favourable in over 50%, 28.57% suffered a severe disability and 23.8% were in a persistent vegetative state. Huttner et al., with a smaller series, do not report statistically significant better prognoses with the use of intraventricular rt-PA. Their comparative analysis with non-fibrinolysed patients includes intraventricular bleeds measured by Graeb as being less serious than those we have analysed. It is worth noting the disproportionate number of changes of the ventricular drainages carried out in their patients because of clotting in the system (59% in the fibrinolysed patients against 32% in the rest, with p = 0.08).

The need for external ventricular drains to control intracranial pressure, for removal of blood and the administration of local treatments has been questioned because of the risk of complications, ventriculitis being the most important. Its incidence varies according to the diagnostic criteria, with figures published of around 20%. In this series, 26.2% of the patients developed ventriculitis; however, this did not imply a worse prognosis (RR 0.83, CI 95%: 0.3–2.31). According to our data on infection associated with ventriculostomy, intraventricular haemorrhage and intraventricular fibrinolysis carry with them a significant risk of infection associated with ventriculostomy, with an RR compared to the rest of patients with ventricular drainage of 1.44 (CI 95%: 0.91–2.28) for IVH and of 2.33 (CI 95%: 1.33–4.2) for IVF. The predominant infectious agents were the Gram positive cocci, already described by other authors. Fountas et al. published an incidence of ventriculitis in patients with IVF of 14.3%, but with different diagnostic criteria.

Published haemorrhagic complications (recurrent IVH or intracerebral haemorrhage) with IVF vary from 8 to 20%, although some often exclude IVH resulting from arteriovenous malformations or aneurysms. In our review, 7.1% of the patients bled after beginning IVF although we treated sixteen patients with vascular anomalies; the cerebral angiography was only made in 50% of the patients, so it was not possible to establish a direct relationship between the two factors, and they did not entail an increase in mortality risk.

Limitations of the study

We identified various limitations in our study; its retrospective character is associated with possible errors in the collection and interpretation of the data from the clinical history. We did not record the time taken to clear the ventricles of blood content as the time of IVF was decided jointly with the neurosurgeon depending on the clinical progress and the clearance of intraventricular blood and was suspended in those patients with a bad neurological outcome, life sustaining-treatment limitation or improvement shown by tomography in the ventricular contamination with blood with a Graeb Score under 5. We cannot present data of the patients with mild IVH (Graeb under 5) as they were not an objective of our study.

Conclusions

In our patients, IVH is an entity with a high morbimortality. Intraventricular fibrinolysis is associated with the development of certain complications that do not worsen the prognosis. While we await the results of the CLEAR III study, care protocols for the neurocritical patient that include the appropriate management of ventricular drainage and the administration of IVF in moderate or serious IVH, would appear to contribute to lower mortality rates and better functional results at three months than those described in the bibliographic references.

Competing interest

The authors declare no conflict of financial interest.

References