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Sergio Muñoz Lezcano a,∗,1, Miguel Ángel Armengol de la  Hozb,1,  Alberto Corbi c,
Fernando  Lópezd,  Miguel Sánchez Garcíae,  Antonio Nuñez Reiz f,
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Abstract
Objective:  To  determine  if  potential  predictors  for  invasive  mechanical  ventilation  (IMV)  are
also determinants  for  mortality  in COVID-19-associated  acute  respiratory  distress  syndrome
(C-ARDS).
Design:  Single  center  highly  detailed  longitudinal  observational  study.
Setting:  Tertiary  hospital  ICU:  two  first  COVID-19  pandemic  waves,  Madrid,  Spain.
Patients or  participants: :  280 patients  with  C-ARDS,  not  requiring  IMV  on  admission.
Interventions:  None.
Main  variables  of interest:  :  Target:  endotracheal  intubation  and  IMV,  mortality.

Predictors:  demographics,  hourly  evolution  of  oxygenation,  clinical  data,  and  laboratory
results.
Results: The  time  between  symptom  onset  and  ICU  admission,  the  APACHE  II  score,  the  ROX
index, and procalcitonin  levels  in blood  were  potential  predictors  related  to  both  IMV  and
mortality. The  ROX  index  was  the  most significant  predictor  associated  with  IMV,  while  APACHE
II, LDH,  and  DaysSympICU  were  the  most  with  mortality.
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Conclusions:  According  to  the  results  of  the analysis,  there  are significant  predictors  linked
with IMV  and  mortality  in C-ARDS  patients,  including  the time  between  symptom  onset  and ICU
admission, the  severity  of  the  COVID-19  waves,  and  several  clinical  and laboratory  measures.
These findings  may  help  clinicians  to  better  identify  patients  at  risk  for  IMV  and  mortality  and
improve their  management.
© 2023  Elsevier  España, S.L.U.  and  SEMICYUC.  All  rights  reserved.
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Predictores  de ventilación  mecánica  y mortalidad  en  pacientes  críticos  con  neumonía
por  COVID-19

Resumen
Objetivo:  Determinar  si las  variables  clínicas  independientes  que  condicionan  el  inicio  de ven-
tilación mecánica  invasiva  (VMI)  son  los  mismos  que  condicionan  la  mortalidad  en  el síndrome
de distrés  respiratorio  agudo  asociado  con  COVID-19  (C-SDRA).
Diseño:  Estudio  observacional  longitudinal  en  un  solo  centro.
Ámbito: UCI,  hospital  terciario:  primeras  dos  olas  de COVID-19  en  Madrid,  España.
Pacientes  o  participantes: 280  pacientes  con  C-SDRA  que  no requieren  VMI  al  ingreso  en  UCI.
Intervenciones:  Ninguna.
Principales  variables  de interés: Objetivo:  VMI  y  Mortalidad.

Predictores:  demográficos,  variables  clínicas,  resultados  de  laboratorio  y  evolución  de  la
oxigenación.
Resultados:  El tiempo  entre  el  inicio  de los  síntomas  y  el  ingreso  en  la  UCI,  la  puntuación
APACHE II,  el índice  ROX  y  los  niveles  de procalcitonina  en  sangre  eran  posibles  predictores
relacionados tanto  con  la  IMV  como  con  la  mortalidad.  El índice  ROX  fue el  predictor  más
significativo  asociada  con  la  IMV,  mientras  que  APACHE  II, LDH  y  DaysSympICU  fueron  los  más
influyentes  en  la  mortalidad.
Conclusiones:  Según  los  resultados  obtenidos  se  identifican  predictores  significativos  vinculados
con la  VMI  y  mortalidad  en  pacientes  con  C-ARDS,  incluido  el  tiempo  entre  el  inicio  de los
síntomas  y  el  ingreso  en  la  UCI,  la  gravedad  de  las  olas  de  COVID-19  y  varias  medidas  clínicas  y
de laboratorio.  Estos  hallazgos  pueden  ayudar  a  los  médicos  a  identificar  mejor  a  los  pacientes
en riesgo  de  IMV  y  mortalidad  y  mejorar  su manejo.
© 2023  Elsevier  España, S.L.U.  y  SEMICYUC.  Todos  los  derechos  reservados.

Introduction

Invasive  mechanical  ventilation  (IMV)  is  a cornerstone  of
organ  support  in severe  COVID-19  patients  with  acute  respi-
ratory  distress  syndrome  (ARDS).  As  widely  experienced  in
ICUs  during  the SARS-CoV-2  pandemic,  IMV  frequently  causes
complications.1,2 Hospital  services  were  overwhelmed  not
only  by  the  surge  of  patients,  but  also  by  scarce  human
resources  and  equipment,  lack  of  sufficient  mechanical
ventilators  being  probably  the most  relevant.  In  surge  sce-
narios,  appropriate  triage  strategies  are therefore  needed
to  allocate  IMV or  alternatives  such  as  high  flow  nasal
prongs.  These  strategies  should  be  based  on  the  knowl-
edge and  understanding  of  specific  potential  predictors3

that  could  help  clinicians  to  personalize  decisions  regarding
IMV.

There  is  still  considerable  controversy  regarding  who  and
when  to intubate.  Several  recent  studies  have  addressed  the
subject,4 although  bias  cannot  be  excluded  in observational
non-randomized  trials.  A retrospective  study  suggested  that
early  intubation  and IMV is  associated  with  favorable  out-

comes  but  included  only  intubated  patients  instead  of  the
whole  population  at risk.

Previous  studies  have  identified  covid-19  progression
predictors  including  age,  comorbidities,  renal  function,  or
immunodeficiency5 using traditional  statistical  approaches,
where  collinearity  of  data  cannot  be ruled  out.  Artifi-
cial intelligence  (AI)  is  currently  being used  for  COVID-19
risk  stratification,6 studying  multiple  clinical  features  to
increase  effectiveness  and efficiency  in diagnosis,  treat-
ment,  and prognosis.  Self-explainable  Machine  learning  (ML)
techniques  can  help  with  risk  factor  selection  through
ranking  methodologies.7 In this  context,  the utilization  of
artificial  intelligence  (AI)  holds  potential  in facilitating  the
development  of  a  conceptual  model  aimed  at  comparing  the
significance  of  variables.  This  can  be  achieved  by  employ-
ing  regularization  models8 to  enhance  predictor  selection,
followed  by  the implementation  of  the Generalized  Lin-
ear  Mixed-effects  Model  (GLMM)9---11 to  construct  the  said
conceptual  model.  Such  an approach  becomes  particularly
relevant  when  assessing  and comparing  outcomes  across  dif-
ferent  AI  models,  enabling  a  comprehensive  evaluation  of
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Figure  1  COVID-19  patients  admitted  during  first  and  second
pandemic  waves.  The  cohort  comprises  280  severe  COVID-19
patients  admitted  to  the  ICU  Department  at HCSC  in Madrid,
Spain,  between  March  3,  2020,  and  February  28,  2021.  Dur-
ing this  time  period,  SARS-COV-2  wild-type  and  subsequently
alpha variants  were  prevalent  in  Spain.  Over  the  study  time
period 4229  covid-19  patients  were  admitted  to  HCSC,  405 of
whom  required  ICU  admission  (first  wave:  153,  second  wave:
252 patients).

variable  significance.  This  is  a  novel  methodology,  leverag-
ing  modern  machine  learning  techniques  to  provide  rigorous
and  applicable  insight  into  relevant  clinical  questions  when
randomized  clinical  trials  are not feasible.  From  here  on, in
this  paper,  we aim  to  determine  if potential  predictors  for
invasive  mechanical  ventilation  (IMV)  are also  determinants
for  mortality  in COVID-19-associated  acute  respiratory  dis-
tress  syndrome  (C-ARDS)  while  comparing  the  significance  of
variables  in both cases.

Patients and  methods

Selection  and  description  of  patients

In  our  retrospective  observational  study,  we  have  collected
and  curated  data  from  our  electronic  medical  records  (EMR)
from  March  3rd  of  2020  through  February  28th  of  2021. We
selected  patients  admitted  to  our  ICU  at San  Carlos  Hospital
(HCSC)  in  Madrid  (Fig.  1) but  were initially  not  mechanically
ventilated.  The  selection  of  patients  considered  just  COVID-

19 pneumonia  patients,  incidental  COVID-19  was  excluded.
The  age range  for  inclusion  was  restricted  to  individuals  aged
18  years  or  older.

The  database  comprises  hourly  data  points  for  each
patient  during  the  first  five  days.  Afterwards,  we  utilized
multi-stage  machine  learning  algorithms  to  assess  the most
significant  variables  in  predicting  invasive  mechanical  ven-
tilation  (IMV)  and  ICU  mortality  (Fig.  2).  It is  worth  noting
that  28-day  mortality,  while  frequently  used in  large  studies
like  RECOVERY,  may  not  be a suitable  outcome  measure  in
COVID-19  patients  due  to  the  possibility  of  delayed  mortal-
ity.

All  data  were  registered  in  our  electronic  medical  record
(ICCA  Philips).  A total  of  12,163  longitudinal  sets of  hourly
clinical  and  lab  data  were  gathered.  Longitudinal  sets  are
grouped  in clustered  events  associated  with  patients.  Each
entry  contains  demographics  data,  first  or  second  wave
admission,  time  elapsed  from  start of  symptoms  to  O2  ther-
apy  and  ICU  admission,  APACHE  II  score,  monitoring,  blood
gases  and  therapy-related  data.  We  discarded  variables  with
more  than  33%  of  missing  values  for  consistency.  We  used
mode  imputation  or  mean  imputation  to  complete  missing
values  of  the remaining  variables.  Tables  1 and  2 show  the
predictors  that  were  finally  used for  the purposes  of  the
study.

Data  were anonymized,  excluding  demographic  or  tem-
poral  information.  The  study  protocol  was  approved  by
the  local  ethics  committee  (approval  code 22/007-E),  who
waived  the need  for  informed  consent  due  to  the  retrospec-
tive  non-interventional  nature of  the study.

Methods  and  techniques

Data  collected  as  described  above  were  used  to  fit the
model12 following  four steps  for  the whole  process,  as  shown
in  Fig.  2.  Considering  that  our  data  involve  a concatenation
of  longitudinal  data  for each patient  in different  events,
it  was  necessary  to  identify  correlations  within  the  cluster
when  trying  to  build  an accurate  prediction  model.10

The  different  regression  approaches  to  select  poten-
tial  predictors  for  IMV and  ICU  mortality  risk  tested
were:  LASSO,13 Ridge,14 Elastic-net,15 Boruta16 and  R-Part.17

LASSO,  Ridge and Elastic-net  perform  an automatic  predic-
tor  selection  supported  by  L1  and L2  regularization  terms18

that minimizes  the risk  of  overfitting,  reducing  variance  and
reaching  an  attenuation  effect  over  the correlation  between
features.  Boruta19 is  a  feature  selection  model  based  on  a
Random  Forest algorithm  that  selects  all  the  risk  predic-
tors  that are relevant  for  classification  purposes  defined  as
all-relevant  problems.  R-Part17 builds a classification  model
based  on  binary  trees. R-Part varImp  function20 identifies
the  effect  of  model predictors  based  on  the  loss  function
mean  squared  error.  In any  case,  potential  predictors  have
been  analyzed  and  confirmed  or  rejected  based on  clinical
criteria.

After  identifying  the  optimal  set  of  potential  predic-
tors  (Figure  10---14  in Supplementary  material),  clustering
effects  by  patient  and temporal  distribution,  as  well  as
cutoff  points  of  the  significant  variables  and their  inter-
actions  were  assessed  with  GLMM  Trees.9---11 To  build  these
trees,  we  took  the entire  dataset  into  account,  grouping
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Table  1  Group  of predictors  for  Invasive  Mechanical  Ventilation  regression  purposes.

Dataset  clinical  and  biochemical  characteristics

Invasive  Mechanical  Ventilation  (IMV)

Variable  N Overall,  N  =  12,163a Invasive  Mechanical  Ventilation  (IMV)  p-valueb

No, N  = 9093a Yes,  N = 3070a

Age,  years,  Median  (Q1-Q3)  12,163  59  (51---68)  58  (50---67)  63  (54---70)  <0.001
Gender, n  (%)  12,163  <0.001

Male 8032  (66)  5649  (62)  2383  (78)
Female 4131  (34)  3444  (38)  687  (22)

Ethnicity, n  (%)  12,163  <0.001
Amerindian  4671  (38)  3625  (40)  1046  (34)
Arab 545  (4.5)  468 (5.1)  77  (2.5)
Spanish 6427  (53)  4591  (50)  1836  (60)
Others 520  (4.3)  409 (4.5)  111  (3.6)

Wave, n  (%)  12,163  <0.001
First 1490  (12)  766 (8.4)  724  (24)
Second 10,673  (88)  8327  (92)  2346  (76)

Body mass  index,  Median  (Q1---Q3)  12,163  27.8  (26.0---31.1)  27.8  (26.0---31.2)  27.7  (26.0---29.4)  0.70
Heart rate,  median  bpm  (IQR)  12,163  73  (65---84)  73  (64---83)  76  (67---87)  <0.001
Temperature in oC,  Median  (Q1---Q3)  12,163  36.80  (36.50---37.10)  36.73  (36.44---37.02)  36.97  (36.64---37.37)  <0.001
Arterial pressure  in mmHg,  Median  (Q1---Q3)  12,163  87  (79---95)  87  (80---95)  87  (78---95)  <0.001
Lactate in mEq/l,  Median  (Q1---Q3)  12,163  1.42  (1.20---1.70)  1.42  (1.14---1.65)  1.50  (1.33---1.80)  <0.001
Procalcitonin, ng/mL  Median  (Q1---Q3)  12,163  0.13  (0.08  ---  0.23)  0.13  (0.07  ---  0.20)  0.14  (0.13  --- 0.35)  <0.001
Eosinophile count  per  cubic  mm,  Median  (Q1---Q3)  12,163  4  (0---20)  4 (0---22)  4  (0---13)  0.011
C reactive  protein,  mg/L  Median  (Q1---Q3)  12,163  8  (6---11)  8 (4---10)  8  (8---15)  <0.001
Alkaline phosphatase  U/L,  Median  (Q1---Q3)  12,163  82  (68---101)  82  (65---99)  82  (76---104)  0.006
Total bilirubin  mg/dL,  Median  (Q1---Q3)  12,163  0.53  (0.44  ---  0.62)  0.53  (0.42  ---  0.59)  0.53  (0.51  --- 0.71)  <0.001
Oxygenation index  (ROX  Index),  Median  (Q1---Q3)  12,163  5.93  (4.52---7.92)  6.18  (5.22---8.67)  4.46  (3.62---5.93)  <0.001
Creatinine, mg/dL  Median  (Q1---Q3)  12,163  0.67  (0.59---0.78)  0.67  (0.58---0.77)  0.67  (0.65---0.82)  <0.001
Leukocyte count  per  mm3,  Median  (Q1---Q3)  12,163  8925  (7160---10,804)  8925  (6857---10,548)  8925  (8400---11,478)  <0.001
Hemoglobin g/l,  Median  (Q1---Q3)  12,163  13.16  (12.28---13.96)  13.16  (12.20---13.93)  13.16  (12.63---14.03)  <0.001
Amylase U/L,  Median  (Q1---Q3)  12,163  63  (50---79)  63  (51---84)  63  (48---64)  <0.001
Lactate dehydrogenase,  Median  (Q1---Q3)  12,163  882  (749  ---  1038)  882 (682---964)  939  (882---1172)  <0.001
Lymphocyte count  per  mm3,  Median  (Q1---Q3)  12,163  829  (638---1049)  829 (657---1148)  829  (570---871)  <0.001
AST (Aspartate  Aminotransferase)  U/L,  Median  (Q1---Q3)  12,163  45  (34---60)  45  (34---63)  45  (33---54)  <0.001
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Table  1 (Continued)

Dataset  clinical  and  biochemical  characteristics

Invasive  Mechanical  Ventilation  (IMV)

Variable  N  Overall,  N  =  12,163a Invasive  Mechanical  Ventilation  (IMV)  p-valueb

No,  N  =  9093a Yes,  N  = 3070a

Hours  from  ICU admission  to  this  register,  Median  (Q1---Q3)  12,163  31  (14---50)  33  (16---51)  23  (9---45)  <0.001
APACHE (Acute  Physiology  and  Chronic  Health  Evaluation)  II,

Median  (Q1---Q3)
12,163  13.0  (10.0---17.0)  12.0  (10.0---16.0)  15.0  (13.0---17.0)  <0.001

Days from  first  symptoms  to  O2  therapy,  Median  (Q1---Q3)  12,163  7.00  (6.00---8.00)  7.00  (6.00---8.00)  7.00  (6.00---8.00)  0.008
Days from  first  symptoms  to  ICU  admission,  Median  (Q1---Q3)  12,163  9.0  (8.0---11.0)  9.0 (8.0---11.0)  9.0 (7.0---13.0)  <0.001
Arterial pH,  Median  (Q1---Q3)  12,163  7.43  (7.41---7.45)  7.43  (7.41---7.46)  7.43  (7.39---7.44)  <0.001
Arterial pCO2,  Median  (Q1---Q3)  12,163  38.1  (35.7---41.0)  38.1  (35.6---40.7)  38.4  (36.0---42.4)  <0.001
Type of  blood  sample,  n  (%)  12,163  <0.001

Arterial 696  (5.7)  496 (5.5)  200  (6.5)
BLDO (Capillary  blood  gas  analysis)  5  (<0.1)  5 (<0.1)  0 (0)
Arterial 91  (0.7)  27  (0.3)  64  (2.1)
Mixed 28  (0.2)  28  (0.3)  0 (0)
Venous 1405  (12)  931 (10)  474  (15)
Venous 9845  (81)  7529  (83)  2316  (75)
Mixed venous  93  (0.8)  77  (0.8)  16  (0.5)

Blood gas  sat.  O2,  Median  (Q1---Q3)  12,163  85  (75---91)  85  (77---91)  84  (72---89)  <0.001
Corticosteroid dose,  first  5  days  of  admission  (mg  of equivalent

methylprednisolone  dose),  Median  (Q1---Q3)
12,163  36  (30---60)  36  (30---60)  36  (30---78)  0.32

Melatonin dose in  mg/day,  n  (%)  12,163  0.001
0 4545  (37)  3445  (38)  1100  (36)
50 3886  (32)  2922  (32)  964  (31)
100 2167  (18)  1617  (18)  550  (18)
200 1565  (13)  1109  (12)  456  (15)

D dimer,  ng/mL  Median  (Q1---Q3)  12,163  1031  (862---1263)  1031  (804---1232)  1031  (1031---1416)  <0.001

This group of predictors will be applied in the selection procedure linked with the five regression algorithms: Ridge, LASSO, Elastic, Boruta and R-part Based on the reached results, the
group of predictors are going to be reduced attending to its behavior related to IMV needs. Figures 7---11 (Supplementary material) shows the results from each regression procedure where
R-Part was finally selected due to its good balance between model performance and explicability of  results.
Data updated June 22, 2023.

a Median (Q1---Q3) or Frequency (%).
b Welch Two Sample t-test; Pearson’s Chi-squared test.
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Figure  2  Methodology  for  fitting  the  machine  learning  algorithms.  In  a  previous  stage,  Figure  5 in  Supplementary  material  shows
the complete  workflow,  from  the  cohort  selection  according  to  clinical  needs  to  the  implementation  of  the  algorithms  that  have
been included  in the  explanation.  The  first  step  involves  the  cohort  selection  as  well  as  the  initial  group  of  variables  considered  in
this study,  The  second  step consists  in the implementation  of  a  statistical  study  of  each  variable.  This  step  also  involves  correlation
(Figure 6  in Supplementary  material)  imputation  and  transformations  procedures  in  order  to  dispose  of the  most  accurate  data
in the  following  steps.  The  third  step  analyzed  the  most  significant  predictors  based  on  five  Machine  Learning  (ML)  techniques
linked with  regression  analysis  based  on  10-fold  cross-validation  regressions.  The  fourth  and  last  step identifies  the behavior  of  each
predictor attending  to  different  proposes.  The  first  one  is  related  to  mechanical  ventilation  needs  attending  to  different  settings
in the  Generalized  Linear  Mixed  Model  (GLMM)  Tree  (depth  of  layers)  looking  for  the  best balance  between  performance  (Akaike
Information  Criterion  (AIC),  Bayesian  information  criterion  (BIC),  Area  Under  the  Roc  Curve  (ROC)  and  more  parameters  within  the
table III)  and explainability  of  the model.  The  second  one  is  related  to  the  most  representative  mortality  predictors  but  following
the same  balance  objective.

data  by  patient  and  data  charting  time  as  random  varia-
bles  to  fit  the  model.12 This  fitting  methodology  avoids  both
over  and  underfitting  effects  that  could  impact  the model’s
performance.21 Models  were  implemented  based  on a 10-
fold  cross  validation  strategy  using  a four-depth-of-layers
(full,  5,  10  and  20)  strategy.  This  means  the fitting proce-
dure  was  executed  ten  times  per  algorithm  implementation.
It’s  necessary  to  remark  that  the  positive  class  for  the  inva-
sive  mechanical  ventilation  (IMV)  variable  refers to  cases
where  IMV  is  required,  while  the  positive  class  for  the ICU
mortality  variable  is  related  to  cases where  patients  die. It  is
worth  mentioning  that the focus  of  the study  is  on  identifying
independent  variables  and  their  associated  thresholds  with

IMV  and ICU  mortality,  without  defining  specific  categories
to  predict.

We  used a  GLMM  Tree  to  build  conceptual  models  that
explain  the association  between  the potential  predictors
and  the  two  outcome  variables.  This  algorithm  accounts  for
data  clusters  and temporal  characteristics  of  the  dataset,
utilizing  a mixed-effect  strategy  to  combine  the potential
predictors  that  influence  the outcome  variables.  Addition-
ally,  the  algorithm  provides  a cut-off  value  for  variables,
allowing  for comparison  with  clinical  experience.

GLMM  Tree  performance  metrics  were  Area Under  the
Curve  of  Sensibility-Specificity  (AUC),  the  Akaike  Informa-
tion  Criterion  (AIC) and  the  Bayesian  Information  Criterion
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Figure  3  ICU  Mortality  Tree  Predictors.  The  predictors  appear  in different  branches  attending  to  their  significance  in  the  predictive
model. Values  in bold  letters  represent  the  registries  per branch.  Values  in red  bold  letters  represent  the percentage  of  registries
with positive  outcome.  The  variable  named  as  ‘‘DAYS  SIMPTONS  ADMISION’’  is  related  with  the  number  of  days  from  first  symptoms  to
ICU admission.  The  variable  ‘‘linf  total’’,  is  related  to  lymphocyte  count  per  mm3.  The  variable  named  as ‘‘dosis  equiv  mpred  5d’’
is related  with  the  corticosteroid  dose,  during  the first  five  days  of  admission  (mg  of  equivalent  methylprednisolone  dose).  The
variable named  as  ‘‘bbTot’’  is  related  with  the  total  levels  of  bilirubin  in blood.  The  variable  names  as  ‘‘ldh’’  is related  to  the
lactate dehydrogenase  serum  level.  The  variable  DAYS  UNTIL  O2  is related  to  the  number  of  days until  the  patient  requires  O2.

(BIC),22 as  well  as  the deviance,  the likelihood  statistical,23

and  the  sensitivity  and  specificity  parameters.  All  the regres-
sion  and  GLMM  Tree models  were  fitted  with  the same  subset
of  variables  shown  in  Table  1.

We  used  both  regressions  and  GLMM  family  trees  to
gain  a  wider  understanding  of  potential  predictors  for  IMV
and  ICU mortality.  This  combined  approach  offers more
intuitive  decision-making  compared  to  black-box  model-
ing  strategies.  We  assessed  each  predictor’s  effectiveness
and  used  the  same  set  of variables  (Table  2)  to build  an
ICU  mortality  model  for  the entire cohort.  The  study’s
anonymized  database  and  scripts  can  be  found  on  the associ-
ated  GitHub  repository.24 The  database  will  be  published  in
PhysioNet25 project  in order  to  disseminate  and  exchange
the  anonymized  clinical  records  looking  for  cooperative
project  replication.

Results

Patient  characteristics

The  complete  cohort  consisted  of  280  patients  who  were
included  in  the  study.  A total  of  154  patients  (55  %)  required
IMV  after  ICU  admission  (Fig.  1),  65  of  80  patients  (81.2  %)
during  the  first  and  89  of  200 patients  (44.5  %)  during  the
second  wave.  ICU  mortality  of  the  whole  cohort  was  25.7%
(72  of  280  patients),  33.7%  (27  of  80  patients)  during  the
first  and  22.5%  (45 of  200  patients)  in the  second  wave.
Table  2  shows  IMV  and  ICU  mortality  predictors  for  the whole
patient’s  cohort.  Mean  registers  per  patient  was  43.4,  for  a

total  of  12,163  hourly  registers  in  the whole  database  (Figure
12  in  complementary  material).

Significance  of predictors

R-Part  classification  achieves  the  best  and  most  clinically
plausible  results  in selecting  the twelve  most  representative
predictors  for  IMV  and  ICU  mortality  from  the  whole  group
of  available  potential  predictors  (Table 2). Concerning  this
subset  of  predictors,  the  final  selection  is  based  on  decreas-
ing  order  of  importance,  according  to  results  reached  by
the  loss  function  (mean  squared  error),  scaled  from  0 to
100  points.  Taking  into  account  this  premise,  the  predictors
are:  days  from  first  symptoms  to  ICU  admission  (100),  the
APACHE  II score  (92.25),  the oxygenation  index,  ROX  index
(72.46),  blood  procalcitonin  (69.59),  serum  lactic  dehydro-
genase  (54.45),  total  serum  bilirubin  (36.54),  the  COVID-19
wave  (31.18),  the dose  of  corticosteroids  administered  dur-
ing  the first  five  days  of  admission  (30.96),  lymphocyte
count  (15.57),  pH  (13.29),  BMI  (12.76),  C-reactive  protein
(12.74),  time  to  oxygen  therapy  (12.42)  and  body tempera-
ture  (10.82).

Modeling  performance

In Table 3,  the performance  of  the IMV model  is  presented.
The  R-part  predictors  Regression-GLMTREE  pair achieved  the
highest  performance  with  an AUROC  of  0.87,  as  shown  in Fig-
ure  8 in the Supplementary  material.  Additionally,  the ICU
mortality  model  performed  well,  with  an AUROC  of  0.88,
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Table  2  IMV  Results.  Group  of  predictors  used  for  mortality  prediction  with  GLMM  tree  algorithm.

Dataset  variables  statistical  characteristics

ICU  mortality

Variable  N  Overall,  N  =  12,163a Mortality  p-valueb

Alive,  N  = 9777a Died,  N  = 2386a

Days  elapsed  from  first  symptoms  to
ICU  admission,  Median  (Q1---Q3)

12,163  9.0  (8.0---11.0)  9.0  (8.0---11.0)  9.0  (7.0---13.0)  <0.001

APACHE (Acute  Physiology  and
Chronic  Health  Evaluation)  II,
Median  (Q1---Q3)

12,163  13.0  (10.0---17.0)  12.0  (10.0---16.0)  15.0  (13.0---17.0)  <0.001

Corticosteroids administered  during
the  first  5d of  admission  as  mg  of
equivalent  methylprednisolone
dose,  Median  (Q1---Q3)

12,163  36  (30---60)  36  (30---60)  36  (30---80)  <0.001

Oxygenation index,  Median  (Q1---Q3)  12,163  5.93  (4.52---7.92)  5.93  (4.95---8.42)  4.58  (3.63---5.93)  <0.001
Serum Lactate  dehydrogenase,  U/L

Median  (Q1---Q3)
12,163  882  (749  --- 1038)  882  (695---964)  1026  (882---1279)  <0.001

Body mass  index,  Median  (Q1---Q3)  12,163  27.8  (26.0---31.1)  27.8  (26.0---31.8)  27.8  (26.0---29.4)  <0.001
Temperature in oC,  Median  (Q1---Q3)  12,163  36.80  (36.50---37.10)  36.78  (36.50---37.10)  36.86  (36.50---37.20)  <0.001
Days elapsed  from  first  symptoms  to

O2  therapy,  Median  (Q1---Q3)
12,163  7.00  (6.00---8.00)  7.00  (6.00---8.00)  7.00  (6.00---7.00)  0.073

Total bilirubin  mg/dL,  Median
(Q1---Q3)

12,163  0.53  (0.44---0.62)  0.53  (0.42---0.60)  0.53  (0.51---0.68)  <0.001

Wave, n  (%)  12,163  <0.001
First 1490  (12)  1031  (11)  459  (19)
Second 10,673  (88)  8746  (89)  1927  (81)
Lymphocyte  count  per  mm3,  Median

(Q1---Q3)
12,163  829  (638---1049)  829  (667---1120)  800  (499---886)  <0.001

Arterial pH,  Median  (Q1---Q3) 12,163  7.43  (7.41---7.45)  7.43  (7.41---7.46)  7.43  (7.38---7.45)  <0.001
C reactive  protein  levels  mg/L,

Median  (Q1---Q3)
12,163  8  (6---11) 8  (5---10)  8  (8---14)  <0.001

Hours from  ICU  admission  to  this
register,  Median  (Q1---Q3)

12,163  31  (14---50)  31  (14---51)  28  (11---47)  <0.001

Data updated June 22, 2023.
a Median (Q1---Q3) or Frequency (%).
b Welch Two Sample t-test; Pearson’s Chi-squared test.

as demonstrated  in Figure  9  in the Supplementary  mate-
rial.  The  IMV  likelihood  ratio  (RV+  3.16,  RV-  0.177)  suggests
that  the  test  result  is  moderately  useful for  identifying  or
discharge  patients  susceptible  to  being  treated  with  IMV.
Related  to the CI  (95%),  the  reached  interval  (0.918  and
0.928)  suggests  a high  level  of  precision  considering  the
sensitivity,  specificity,  and  accuracy  of  the model.  Related
to  ICU  mortality,  the  IMV likelihood  ratio  (RV+  5,105,  RV−

0.424)  and  CI  (95%)  interval  (0.817  and  0.833),  results  are
also  moderately  useful.  Fig.  3  illustrates  the ICU Mortality
decision  tree,  while  Figure  7 in the Supplementary  material
presents  the IMV  decision  tree.  The  optimal  cut-off  point for
the  prediction  model  was  determined  based  on  the IMV  and
ICU  mortality  AUC,  using  Youden’s  Index,26 which  identifies
the  point  of  maximum  sum  of sensitivity  and  specificity  in
ROC  curve  analysis.

The  trees  in Figures  6  and  7 of  the  Supplementary  mate-
rial indicate  that  oxygenation  status  (ROX  index)  has  the
most  significant  influence  on  IMV,  with  a  threshold  near  5.2.
On  the  other  hand,  ICU  mortality  is  mainly  influenced  by

comorbidities  (APACHE  II  score)  and LDH, as  revealed  by  the
same  trees.

Discussion

The  results  of  the  present study  include  some  highly  rele-
vant  clinical  results.  First,  the variable  sets predicting  IMV,
and  ICU mortality  are  different.  Whereas  oxygenation  varia-
bles  are  independent  predictors  of  IMV,  ICU mortality  is
associated  with  increased  age  and LDH  and  the  presence
of  comorbidities.  The  latter  variables  may  be  considered
markers  of two  processes:  COVID-19-associated  inflamma-
tion  and ICU-acquired  superinfection  (see  Figure  4  in  the
Supplementary  material).  Secondly,  the  characteristics  of
pharmacological  therapy,  including  the administration  of
steroid  drugs, has  little  influence  on  both the  need  for
IMV  and  ICU  mortality,  considering  our  results.  We  included
in the  analysis  64  patients  not  receiving  steroids  and  216
receiving  this treatment,  at the usual  6 mg  dexametha-
sone  or  equivalent  daily  dose. This  is  a  remarkable  finding,
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Table  3  IMV  Results.

GLMM  (Generalized  Linear  Mixed  Model)  trees  results

Mechanical  ventilation

Regressions  No Predictors  AUC  C.I(95%)  AIC  BIC  Deviance  Log  Lik  Sensitivity  Specificity  LR+  LR−

Ridge  criteria  25  0.852  0.859−0.872  9263.82  9493.41  9201.82  −4600.91  0.856  0.689  2.75  0.206
LASSO criteria  22  0.852  0.847---0.862  9263.82  94,939.41  9201.82  −4.600.91  0.856  0.852  5.78  0.166
Elastic criteria  20  0.858  0.847---0.862  9111.20  9325.98  9053.20  −4526.60  0.750  0.816  4.07  0.308
Boruta criteria  32  0.897  0.862---0.875  7775.23  8004.82  − −3856.61  0.858  0.800  4.29  0.177
R-Part criteria  13  0.867  0.918---0.928  7830.28  8059.87  7758.28  −3884.14  0.871  0.725  3.16  0.177

The Akaike Information Criterion (AIC) reports the information score of  the whole models: the smaller the AIC value, the better the model fit.  AIC is calculated from the number of
independent variables to build the model and the maximum likelihood estimate of the model (how well the model reproduces the data). The best-fit model according to AIC is the one that
explains the greatest amount of  variation using the fewest possible independent variables. Bayesian information criterion (BIC) is another criteria for model selection that measures the
trade-off between model fit  and complexity of the model. A lower AIC or BIC  value indicates a better fit. The log-likelihood (log Lik) value of a regression model is a way to measure the
goodness of fit  for a model. The higher the value of the log-likelihood, the better a model fits a dataset. Deviance is a goodness-of-fit metric for statistical models, particularly used for
GLMs. It  is defined as the difference between the Saturated and Proposed Models and can be thought as how much variation in the data does our Proposed Model account for. Therefore,
the lower the deviance, the better the model. Sensitivity is the metric that evaluates a model’s ability to predict true positives of each available category. Specificity is the metric that
evaluates a model’s ability to predict true negatives of each  available category. The higher value of sensitivity would mean higher value of  true  positive and lower value of false negative.
For the healthcare domain, models with high sensitivity will be desired. Specificity is the metric that evaluates a model’s ability to predict true negatives of  each available category.
These metrics apply to any categorical model. Specificity is defined as the proportion of  actual negatives, which got predicted as the negative (or true negative). Specificity is a measure
of the proportion of  people not suffering from the disease who got predicted correctly as the ones who are not suffering from the disease. In other words, the person who  is healthy
actually got predicted as healthy. The likelihood ratio is often used in statistical hypothesis testing and model selection to compare the fit  of  different models to the observed data. It  is
also commonly used in medical diagnostic testing to evaluate the diagnostic accuracy of  a particular test or combination of tests. LR+ (likelihood ratio positive) is a statistical measure
used to evaluate the diagnostic accuracy of  a medical test. It is  the ratio of the probability of a positive test result given the presence of the disease to the probability of a positive test
result given the absence of the disease. In other words, the  LR+ compares the likelihood of a positive test  result in patients with the disease versus the likelihood of  a positive test result
in patients without the disease. In  our case, a high LR+ indicates that the test is more accurate at correctly identifying patients how could need IMV, while a low LR+ suggests that the
test is not providing strong evidence for IMV. By the way, LR−  compares the likelihood of a negative test result in patients with the disease versus the  likelihood of  a negative test result
in patients without the disease. A low LR- indicates that the test is more accurate at correctly identifying patients without the need of  IMV, while a high LR- suggests that the test is not
providing strong evidence for the absence of IMV. The LR+ and LR−  are often used in conjunction with other measures of  diagnostic accuracy, such as sensitivity, specificity to assess the
overall performance of a medical test. It  can help clinicians and researchers determine the optimal use of a particular test in diagnosing a disease or condition. CI stands for c̈onfidence
interval.Ä confidence interval CI is a range of values that is likely to contain the true value of  a  population parameter (such as a mean or a proportion), with a certain degree of confidence
(usually expressed as a percentage, such as 95%  or 99%). A  narrower interval indicates greater precision, while a wider interval indicates greater uncertainty. The exact range of  a g̈oodC̈I
can vary depending on the context and the specific research question, but typically, a narrower interval is preferred as it provides a more precise estimate. In  the case of  the  area under
the receiver operating characteristic curve (AUROC), which is commonly used in binary classification problems, a  CI that includes a value of 0.5 (indicating no discrimination between the
two groups) is generally considered to be uninformative. On the other hand, a CI  that does not include 0.5 and has a range of, for example, 0.7---0.8, may be considered good, indicating
that the model has  reasonably good discriminative ability. However, the interpretation of the AUROC and its associated CI should always be considered in the  context of  the specific
research question and the particular field of  study.
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because  the  effect  of steroids  on  mortality  identified  in a
previous  trial27 have influenced  recommendations,  as  well
as clinical  practice,  since  its  publication.  It may  be spec-
ulated  that  the decision  to  include  and  randomize  or  not
at  the  discretion  of  the attending  physicians,  and  based  on
undisclosed  criteria,  rendered  different  results  by  selecting
a  study  subset  of  COVID-19  cases  with  different  charac-
teristics.  In  comparison,  no inclusion-exclusion  criteria  for
selection  process  were  applied  in  our  ‘‘pragmatic’’  type  of
cohort.  Steroids  were  given  to almost  every  patient  unless
a  severe  contraindication  existed,  after  the results  of  the
RECOVERY  trial  were  made  available.

The  present  study  applied  a novel  methodology  (logis-
tic  regression  with  regularization  plus  GLMM  Tree  mixed
models)  to  evaluate  the  relative  importance  of  several
variables  as  predictors  of significant  clinical  events.  Using
machine  learning  and a  fine-grained  longitudinal  multi-
faceted  database,  we  have  established  relevant  variable
value  thresholds  to  support  clinical  decisions.  Although the
model  would  perform  quite  well  as  predictor  for  IMV  and  ICU
mortality,  with  good positive  predictive  values,  it is  impor-
tant  to emphasize  that  this  is  not a  predictive  model  in
the  classical  sense,  but  an  attempt  to  pinpoint  the most
important  clinical  events  that represent  turning  points  dur-
ing  the  studied  process  (in  this case,  clinical  management
of  patients  not initially  under  IMV).  In  this sense,  we  should
say  that  the  inclusion  of  the likelihood  ratio  as  an evaluation
factor  for  comparing  performance  model was  reach  great
results.  However,  following  the premise  of  model explain-
ability,  we  believe  it is  important  to take  this  element  into
account  as  a final  selection  factor  for  the set  of  predictors
that  best  fit  daily  clinical  practice.  This  study  demonstrates
that  predictor-ranking  methodologies  using  self-explainable
machine  learning  may  support  therapeutic  decision-making
using  observational  data,  when randomized  clinical  trials  are
unfeasible  or  unethical.

Regarding  with  the strengths  of  our  study,  we  would like
to  mention  the quantity  and quality  of  the data  set.  Col-
lected  data  have a high  level  of  detail,  leveraging  the power
of strategically  devised  electronic  health  records  (EHR),
which  include  relevant  information  in  a  highly  structured
and recoverable  format.  Every  effort was  made  to  config-
ure  our  EHR  to  optimally  gather  all  relevant  information
about  COVID-19  patients.  Also,  our anonymized  database  is
available  in  the  repository  along  with  the script we  used  for
statistical  analysis,  is  highly  detailed  and has  been  exten-
sively  curated  to  reflect  temporal  evolution  and  to  improve
data  quality  as  much  as  possible.  In  any  case,  the collec-
tion  of  variables  from  Electronic  Health  Records  (EHR)  may
be  biased,  affecting  data  quality.  Age  and  gender  biases
are  possible,  as  well  as  biases  related  to  the  selection
and  measurement  of  clinical  variables.  These  biases  can
lead  to  incomplete  or  skewed representations  of  certain
population  groups and  may  impact  the validity  and gener-
alizability  of research  findings  and clinical  decision-making.
It  is  important  to  be  aware  of  these  biases  to ensure  proper
interpretation  and  use  of  EHR  data.

On  the  other  hand,  the limitations  of our  study  results
relate  mainly  to  its  single-centered  nature and require
confirmation  in a multicenter  dataset  to  gain  external
validity.  Our  methodology  would  be  perfectly  suited  for a
multicenter  study,  including  ‘‘center’’  as  a  random  factor

in the  second  (GLMM  Tree) part  of  the  process.  We  sug-
gest  that  future  research  applying  this methodology  could
focus  on  designing  clinical  studies  using  observational  data
to  answer  relevant  clinical  questions  without  the logistic
requirements  of  a  randomized  clinical  trial  or  for  hypothesis-
generating  purposes.  Furthermore,  when  considering  the
limitations  of  using  generalized  linear  mixed  effects  models
(GLMMs)  for  modeling  causation  in critical  care  medicine
research,  it is  important  to  highlight  the  absence  of  explicit
causality  assumptions.  GLMMs  primarily  focus  on  associa-
tion  or  correlation  analysis,  lacking  the ability  to  address
the  assumptions  necessary  for  establishing  causal relation-
ships.  Specifically,  GLMMs  do  not  provide  frameworks  for the
identification  of  causal  effects  or  account  for  unmeasured
confounding  variables,  which  are crucial  considerations
in  causal  inference.  In contrast,  causal  inference  meth-
ods,  such  as  the potential  outcomes  framework,  explicitly
address  these  assumptions,  offering  a more  comprehensive
approach  for  investigating  causality.  Therefore,  when estab-
lishing  causal  relationships  between  variables,  researchers
should  carefully  consider  the limitations  of GLMMs  and  opt
for  causal  inference  methods,  which provide  a more  robust
approach  for investigating  causality  in  critical  care medicine
research.

In  conclusion,  different  variables  predict  IMV  and  ICU
mortality  in severe  COVID-19  patients,  suggesting  that the
therapeutic  decision  of  when to  use  IMV has  little  impact  on
ICU  mortality.  Our  methodology  is  a valid  option  to  assess
therapeutic  decisions  using  observational  data  when  ran-
domized  clinical  trials  are not  feasible  or  ethical.
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