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Abstract

Objective:  To  describe  the  results  of  the  application  of  a  Machine  Learning  (ML)  model  to  predict

in-hospital cardiac  arrests  (ICA)  24  hours  in  advance  in  the hospital  wards.

Design:  Retrospective  observational  cohort  study.

Setting:  Hospital  Wards.

Patients:  Data  were  extracted  from  the hospital’s  Electronic  Health  Record  (EHR).  The  resulting

database contained  a  total  of  750 records  corresponding  to  620  different  patients  (370  patients

with ICA  and  250  control),  between  may  2009  and  december  2021.

Interventions:  No.

Main  variables  of  interest:  As  predictors  of  ICA,  a  set of 28  variables  including  personal  history,

vital signs  and  laboratory  data  was  employed.

Models:  For  the  early  prediction  of  ICA, predictive  models  based  on the  following  ML  algorithms

and using  the  mentioned  variables,  were  developed  and  compared:  K  Nearest  Neighbours,  Sup-

port Vector  Machine,  Multilayer  Perceptron,  Random  Forest,  Gradient  Boosting  and  Custom

Ensemble  of  Gradient  Boosting  estimators  (CEGB).
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Experiments:  Model  training  and evaluation  was  carried  out  using  cross  validation.  Among

metrics of  performance,  accuracy,  specificity,  sensitivity  and  AUC  were  estimated.

Results: The  best  performance  was  provided  by  the  CEGB  model,  which  obtained  an  AUC  =  0.90,

a specificity  = 0.84  and  a  sensitivity  =  0.81.  The  main  variables  with  influence  to  predict  ICA  were

level of  consciousness,  haemoglobin,  glucose,  urea,  blood  pressure,  heart  rate,  creatinine,  age

and hypertension,  among  others.

Conclusions:  The  use  of  ML  models  could  be  of  great  support  in the  early  detection  of  ICA,  as

the case  of  the  CEGB  model  endorsed,  which  enabled  good  predictions  of  ICA.

© 2024  Published  by  Elsevier  España,  S.L.U.

Introduction

Although  in-hospital  cardiac  arrests  (ICA)  are  rare,  they
are  linked  to  a high  mortality  rate, being  therefore  cru-
cial  the  identification  of  patients  with  high  risk  of  ICA,
since  it  allows  immediate  intervention,  avoiding  the acute
event  and  decreasing  the probability  of  a fatal outcome.
Therefore,  unexpected  clinical  deterioration  in hospitalised
patients  is  an important  concern  for  the  clinical  safety  of
the  patient  and  for the Intensive  Care  Unit  (ICU).1 In  fact,
more  than  a half  of  cardiac  arrests  result  from  respiratory
failure,2 or hypotension  and  fall  in  Glasgow  Coma  Scale,3 and
up  to 80%  of  patients  with  cardiac  arrest  show  signs  of dete-
rioration  in  the  8 hours  before  cardiac arrest.4 To identify
hospitalised  patients  at  risk  of  clinical  deterioration,  Early
Warning  Systems  (EWS)5 such  as  the  Modified  Early  Warn-
ing  Score  (MEWS)6 or  Cardiac  Arrest  Risk  Triage  Score7 are
normally  used,  which  are  currently  incorporated  in many
hospitals,  and whose  aim  is  to  identify and  act  promptly  on
these  patients.  The  introduction  of  a management  system
in  Intensive  Care  Medicine  based on  the safety of  the  seri-
ously  ill  patient  during their  entire hospitalisation  has shown
promising  results,8 reducing  rates of  ICA  and mortality.9

Besides,  a  large  amount  of  daily  information  from  different
medical  systems  and  devices  that  can be  processed  digitally
to  be  used  in the personalised  patient’s  treatment.  All  this
information  allows  the use  of  techniques  known  as  Big  Data
Analysis  (BDA)  and  Machine  Learning  (ML), used  for improv-
ing  the  clinical  patient’s  safety  in people  with  high-risk  of
complications.10 As  other  studies  explained,  the information
technologies  (ITs)  as  BDA  can  be a complementary  tool  to  the
daily  work  of  the ICU,11 since  they  could  contribute  to  ame-
liorate  the  prognosis  of  patients  hospitalised  in  the  wards.12

Consequently,  ITs  are being  under  study  for  the creation  of
clinical  decision  support  systems,  having  great  potential  for
the  prediction  of  various  conditions  such as  sepsis,13 massive
haemorrhage  in  patients  with  severe  traumatic  injury14 and
mortality.15 Recently,  several  studies  that  used  ML  to  pre-
dict  ICA  through  patient  clinical  features  have  reported  that
ML-based  models  are  superior  to  conventional  rule-based
tools.16

Different  ITs  strategies  have  been  proposed,17 describ-
ing  that  algorithms  based on ML  have  a  greater  sensitivity
and  a  lower  false  alarm  rate  than  traditional  systems  for
early  identifying  patients  with  cardiac  arrest,18 reinforc-
ing the  idea  that  ML  with  BDA  will  allow  better  diagnosis,
risk  stratification  and  personalised  treatments,  by  generat-

ing precision  medicine.  The  presented  study  tries  to  detect
ICA  24  hours  in advance  by  means  of  ML  models  that  have
been  trained  with  a larger  set  of  predictor  variables,  which
includes  patient  antecedents.  On  top  of  that,  an analysis
of  which  of  these predictors  most  influence  the  model  is
included.

Primary  objectives

To develop  and evaluate  several  predictive  models,  based
on  ML  algorithms,  that estimate  the  risk  of ICA  24  hours
before  the event,  by  using variables  registered  the hospital’s
Electronic  Health  Record (EHR)  that  belonged  to  a  cohort  of
both  ICA  and non-ICA  patient.  To  validate  the  hypothesis
that  ML models  may  allow  to  predict  ICA  with  a significantly
higher  accuracy  than  traditional  score  systems  that  employ
a  smaller  set  of  features.  To  establish  which  demographic,
clinical,  laboratory  and  antecedent  variables  are  most  pow-
erful  predictors  of  ICA.

Methods

Study  design  and settings

A  retrospective,  observational,  based  on  real-world  data,
cohort  study  was  performed.  Two  cohorts  of  patients  belong-
ing  to  the Son  Llàtzer  University  Hospital  (HUSLL),  a  Spanish
second  regional  level hospital,  were  used1:  all  patients
who  had  suffered  an  ICA  (positive  cases)2;  a  sample  of
patients  with  no  ICA  (control  patients),  randomly  selected
among  hospitalisations  where  no  cardiac  arrests  occurred.
All  patients  had been  hospitalised  through  the  Emergency
Department,  and  the  distribution  of  patients  among  hospital
services  was  similar  in  the two  cohorts.  For data  collection
of  positive  cases,  the Utstein  style  guidelines18 were fol-
lowed,  where  the  inclusion  criteria  were: all  patients  over
18  years  of age who  suffered  a cardiorespiratory  arrest  in the
hospital  wards  from  September  2009  to  december  2021  and
treated  by  the ICU,  with  cardiac  arrest  being  defined  as  loss
of  pulse  with  attempted  resuscitation.19 The  total  number  of
admissions  in HUSLL  was  1,065,722  during this period,  with  a
prevalence  of  around  0.64  ICAs  per  1,000  admitted  patients.
The  exclusion  criteria  of  ICAs  for  the  study  were:  cardiac
arrests  where  the  patients  refused  resuscitation  manoeu-
vres  despite  medical  recommendation.  Besides,  ICAs that

89



L.  Socias  Crespí,  L.  Gutiérrez  Madroñal, M.  Fiorella  Sarubbo  et  al.

followed  another  cardiac  arrest  from the  same  patient  in a
less-than-7-days  period  were  also  excluded,  to  avoid  anal-
ysis  alterations.  ICAs  from  the same  patient,  separated  in
time  by  more  than  7 days, were  considered  separately.  As
the  goal  of the study  was  to build  a  model  to  predict  ICA
24  hours  before  the event,  the  predictor  variables  were
filtered  to  focus  on the time  of  the  event,  analysing  the
measurement  of  each  variable  that  was  closest  in  time  to
24  hours  before  the  episode.  It was  made  sure  that  the mea-
surement  selected  as  the  value  of  each  variable  had been
recorded  in  a  time  interval  of  72  to  12  hours  before  the ICA.
Furthermore,  if no measurements  of  the variables  had  been
recorded  for  the patient  between  36  and  12  hours  before
an  arrest,  the  arrest  itself  was  discarded  and  not used as  a
data  point,  as  it was  considered  that the predictor  informa-
tion  could  not  represent  the  patient’s  state  one  day before
the  event.

In  healthy  patients,  measurements  of  clinical  and  lab-
oratory  variables  that  had  been  recorded  during  their
hospitalisations  were  extracted.  Then,  preliminary  data
points  were  constructed  every  time  a variable  received  a
new  measurement,  with  these  points  being composed  of the
last  measurement  of  each variable  in  a  60  -h  window.  Hence,
there  was  initially  a great  number  of  data  points  per  hospi-
talisation  per  patient.  Those data  points  that  minimised  the
number  of missing  values  for  each patient  were  selected,
considering  that  at  least  one record  for  each control  must  be
selected  so  as  not to  lose  patients  in the sampling.  Once this
set  of  250  points  was  obtained,  other  125  data  points  were
sampled  randomly  from  the  remaining  ones,  to  complete
the  control  cohort.  In  addition,  it  was  forced  that  the  60  -h-
window  data  points  chosen  for  one  same  patient  were more
than  6 days  apart,  so  that  there  was  variability  in the mea-
surements.  The  resulting  database  contained  a  total  of  750
data  points  (a data  point  consists  in  a  row  of  the processed
dataset  that  was  built  for  the  analysis  of  the study,  extracted
from  the  Electronic  Health  Records  (EHR)  of  patients  that
were  hospitalised  during  a certain  period  in HUSLL)  corre-
sponding  to  620 different  patients,  370 patients  with  ICA  and
250  controls,  where  375  records  were  extracted  from  each
cohort,  obtaining  a  balanced  dataset.

This  retrospective  cohort  study  was  approved  by  Research
Ethics  Committee  of  Illes  Balears  (Code:  IB  4951/22  PI).  The
use  and  processing  of  the  collected  data  was  ensured  to
comply  with  the  Organic  Law  3/2018,  of  5  December,  on
the  Protection  of  Personal  Data  and  the Guarantee  of  Digi-
tal  Rights.  Patient  information  was  anonymised  prior  to  the
study.

Selected  variables

A total  of 28  variables  were  collected  from  the EHR.
These  variables  were  classified  in the following  types of
predictors:  demographic  (sex  and age  at the time  of  hospi-
talisation),  vital signs (respiratory  rate  (RR),  systolic  blood
pressure  (SBP),  heart  rate  (HR),  body  temperature,  satu-
ration  oxygen  (SO2) and  low  level of  consciousness  (LC)
measured  with  Glasgow  scale),  laboratory  biomarker  anal-
yses  (bicarbonate,  blood  creatinine,  blood  glucose,  blood
urea,  haemoglobin,  lactate,  magnesium,  O2 saturation,
potassium)  and  comorbidities  (arterial  hypertension  (ATH),

chronic  obstructive  pulmonary  disease  (COPD),  diabetes,
dialysis,  dyslipidaemia,  smoking,  ischemic  heart  disease
(IHD),  liver  failure,  neurological  disease,  renal  failure,  can-
cer).  Continuous  variables  were  represented  as  numbers
(Table  1),  categorical  variables  were  classified  in  binary  cat-
egories  (Table  2).  The  comorbidities  were  identified  using
ICD-9/10  code.

The  missing  values  were  filled  with  the median  value for
numerical  variables  and  mode  for binary  ones.

Models

Several  ML algorithms  were  used  to  address  the problem
of  predicting  which  patients  would  suffer  an  ICA.  These
methods  employ  mathematical  models  to  capture  complex
associations  between  predictor  and  target  variables.  The
target  variable  was  the presence  or  absence  of  ICA  around
24  hours  after  the measurement  of  their  predictor  variables.

Such  algorithms  were  the  following:  K Nearest  Neighbours
(KNN),20,21 Support  Vector  Machine  (SVM),22 Multilayer  Per-
ceptron  (MLP),23 Random  Forest  (RF),24,25 Gradient  boosting
(GB),26 Custom  Ensemble  of Gradient  Boosting  estimators
(CEGB).  The  latter,  as  its  name  implies,  was  a  self-made
algorithm  based on  combining  other  several  GB  algorithms.
The  ML  model  training  is  furtherly  explained  in Annex  I  in
the  Supplementary  material.

Furthermore,  MEWS6 was  also  evaluated  on the dataset
as  a reference  system  to  compare  ML-based  models  with.

Experiments

Cross  validation

The  experiments  were  carried  out with  the iterative  method
of  4-fold  cross-validation  (CV).27 With  this  technique,  aver-
age  performance  metrics  with  95%  confidence  intervals  (CI)
were  obtained  for the different  models.  More  details  on  this
process  are in Annex  II  in the Supplementary  material.

Metrics

The  performance  of  the ML models  was  evaluated  with  sev-
eral  metrics28:  accuracy,  recall or  sensitivity,  negative  recall
or  specificity,  area  under  ROC  curve  (AUC),  precision  or  pos-
itive  predictive  value (PPV),  negative  precision  or  negative
predictive  value  (NPV).  They were  calculated  in every  itera-
tion  of  the 4-fold  CV,  by  comparing  the  actual  classes  of  the
testing  data  with  the  predictions  generated  by  the  models.
While  negative  and  positive  recalls  reveal  the performance
of  the  model  per  class,  in terms  of  the cases  that  can  be
expected  to  be detected  by  a  model,  the  precisions  allow
to  evaluate  the  reliability  of the predictions  and  thus  a
model’s  clinical  utility.  Accuracy  is  a global  (not per-class)
representation  of  both  performance  and reliability.  A further
explanation  of  these  metrics  is  in Annex  III  in the  Supplemen-
tary  material.

Features  importance

There  exist  methods  based  on  algorithmic  explainability  that
allow  an  insight of  how  the ML  model  uses  the predictor
variables  to  make  predictions.  In this  study,  Shapley  Addi-
tive  exPlanations  (SHAP)  technique29 was  employed  on  the
ML  model that  showed  the  best  overall  performance.  Such
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Table  1  Comparison  of  baseline  characteristics  between  the train  and test  cohorts.

Mean  (±  Standard  Deviation)  Median  (Q1,  Q3)  MV  (%)

Variable No  Cardiac  Arrest  Cardiac  Arrest  No  Cardiac  Arrest  Cardiac  Arrest  No Cardiac

Arrest

Cardiac

Arrest

Age  63.39  (±19.32)  72.64  (±12.83)  67.0  (50.0,  79.0)  75.09  (66.06,

81.88)

0.27  0.00

Bicarbonate 25.02  (±5.9)  23.73  (±6.19)  24.75  (23.35,

27.65)

24.48  (19.77,

28.15)

85.87  83.20

Blood creatinine 1.19  (±1.46) 1.62  (±1.24) 0.84  (0.73,  1.15) 1.27  (0.81,  2.0) 16.80  14.93

Blood glucose  123.12  (±62.23)  161.44  (±82.58)  106.0  (92.0,

133.0)

140.0  (106.0,

193.0)

20.00  17.60

Blood urea  49.2  (±38.69)  80.64  (±54.0)  38.0  (27.0,  57.0)  66.0  (44.0,  100.0)  16.80  14.93

Haemoglobin  12.94  (±2.26)  11.08  (±2.39)  13.2  (11.42,  14.5)  11.0  (9.24,  12.9)  16.27  16.00

Heart rate  83.57  (±20.49)  86.17  (±20.75)  79.0  (70.0,  95.25)  85.0  (72.0,  98.0)  7.20  22.67

Lactate 1.47  (±1.17)  3.92  (±3.67)  1.09  (0.9,  1.4)  2.49  (1.51,  5.19)  91.47  85.07

Magnesium  2.01  (±0.37)  2.08  (±0.53)  1.98  (1.84,  2.17)  2.04  (1.84,  2.26)  76.80  66.93

O2 saturation  95.99  (±3.44)  93.97  (±6.39)  96.0  (95.0,  98.0)  95.0  (93.0,  97.0)  10.40  22.40

Potassium 4.27  (±0.57)  4.43  (±0.78)  4.26  (3.9,  4.56)  4.4  (3.82,  4.89)  18.13  16.80

Respiratory  rate  19.04  (±5.58)  21.36  (±10.51)  18.0  (16.0,  20.0)  20.0  (16.25,  22.0)  50.93  63.20

Systolic blood

pressure  (SBP)

127.1  (±23.84)  122.14  (±25.19)  126.0  (110.0,

142.0)

120.0  (103.25,

140.75)

7.20  23.73

Temperature  36.38  (±0.68)  36.36  (±0.68)  36.3  (36.0,  36.8)  36.4  (36.0,  36.7)  1.33  23.47

MV % missing values are displayed (MV%).

Table  2  Summary  characteristics  of  the  binary  predictor  variables.

Variable Presence  (%)

No Cardiac

Arrest

Presence  (%)

Cardiac  Arrest

Arterial  hypertension  (AHT)  45.33  72.27

Chronic obstructive  pulmonary  disease  (COPD)  8.27  26.93

Diabetes 21.33  42.93

Dialysis 1.07  2.93

Dyslipidaemia  35.20  41.60

Haematological  cancer  (HC) 1.87  5.60

Heart failure 8.00  20.53

Ischemic  heart  disease  (IHD) 8.00  26.67

Liver failure  3.73  6.40

Low level  of  consciousness  (LC)  0.00  25.60

Neurological  disease 9.07  14.67

Renal failure  8.00  24.53

Sex (women)  46.40  33.07

Smoking  14.40  32.00

Solid cancer  12.00  16.27

method  gives  a  SHAP  value  to  every  variable  of  every  data
point  for  which  the model  has  generated  a  prediction.  This
value  represents,  on  the  one  hand,  how  much  influence  the
variable  has  in the  prediction  for  the  data  point.  The  higher
the  magnitude  of  the  SHAP  value,  the  greater  the influence
of  the  variable.  On the other  hand,  it also  illustrates  the
direction  of the  association  between  the variable  and  the
prediction.  If the SHAP  value  is  positive,  the  variable  has
influenced  the prediction  to  be  positive  (presence  of  ICA),
and  vice  versa.  Note  that  the  SHAP  method  considers  the
interactions  between  predictor  variables  when  estimating
their  influences  on the  predictions.

In  this  analysis,  the SHAP  technique  was  used on  the  test
data  of  every  iteration  of  the  4-fold  CV,  so a summary  plot
with  the  aggregated  SHAP  values  is  displayed.

Results

ML  models  performance  and  validation

The  metrics  of  discrimination  obtained  by  the  different  ML
models  are shown  in Table  3.  All  the studied  ML  models  cor-
rectly  classified  most  of  the test  data  points,  although  the
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Table  3  Metrics  obtained  by  the different  ML  models  and  the reference  model,  MEWS.  The  results  are the  averages  (in  %,  with

Confidence Intervals  at 95%)  across  the  four  splits  in the  cross-validation.

Classifier  Accuracy  AUC  Sensitivity  Specificity  PPV  NPV

MEWS  57.7  (53.2,  62.2)  61.8  (56.9,  66.7)  50.2  (47.0,  53.4)  65.3  (57.7,  72.9)  59.3  (54.0,  64.6)  56.6  (51.2,  62.0)

KNN 72.0  (67.5,  76.5)  79.7  (73.3,  86.1)  71.5  (63.5,  79.5)  72.6  (70.8,  74.4)  72.2  (68.1,  76.3)  71.9  (65.9,  77.9)

SVM 61.4  (49.9,  72.9)  61.9  (26.4,  97.4)  84.3  (64.6,  100.0)  38.5  (0.0,  81.0)  59.7  (47.9,  71.5)  54.5  (3.7,  100.0)

MLP 74.9  (69.8,  80.0)  84.7  (77.4,  92.0)  75.1  (56.3,  93.9)  75.2  (65.3,  85.1)  75.4  (70.1,  80.7)  76.2  (62.5,  89.9)

RF 80.0  (75.9,  84.1)  90.1  (86.6,  93.6)  81.1  (74.6,  87.6)  78.9  (71.7,  86.1)  79.6  (74.3,  84.9)  80.7  (73.9,  87.5)

GB 80.4  (75.6,  85.2) 89.3  (84.8,  93.8) 79.2  (75.4,  83.0)  81.5  (70.5,  92.5)  81.6  (73.8,  89.4)  79.6  (75.3,  83.9)

CEGB 82.4  (79.2,  85.6) 90.4  (86.4,  94.4) 80.8  (74.8,  86.8) 84.0  (76.2,  91.8)  83.8  (77.8,  89.8)  81.4  (76.5,  86.3)

extremely  wide  CI  in the  SVM’s  metrics  (reaching  0 for  speci-
ficity  and  100  for  sensitivity)  indicate  that  said  model  always
predicts  as  positive  in some  CV iterations.  The  RF,  GB and
CEGB  algorithms  correctly  predict  4 out of  5  cases,  with  bal-
ance  between  the two  classes.  Furthermore,  their  CI  imply
that  none  of  these  tree-based  models  can  be  said  to  outper-
form  the  others  at 95%  confidence.  AUC  also  showed  a higher
general  predictive  capacity  for  the  tree-based  algorithms,
and  a  more  limited  one for  the KNN  and SVM  classifiers.
The  ML  model  that offered  an  overall  optimal  performance
was  the  CEGB  estimator,  which  showed  the highest  accu-
racy,  AUC,  specificity,  PPV  and  NPV,  while  still  classifying
correctly  4  out  5  positive  data  points  (sensitivity  of  0.81).
It  also  tended  to  produce  the  narrowest  CI  among  the tree-
based  models,  which  entails  that  its  performance  across  the
CV  splits  was  the most  stable.

MEWS  also  showed  narrow  CI,  which  suggests  robustness,
but  its  overall  performance  was  poorer  than  most  of  the ML-
based  models.  In  general,  it only classified  correctly  slightly
more  than  a  half  of  the  samples.  The  lower  limits of the KNN,
MLP,  RF,  GB  and CEGB  were  seldomly  lower  than  the upper
limits  of  MEWS’s  metrics,  implicating  a  lower  performance
in the  true  population  with  a 95%  confidence.

SHAP  analysis

SHAP  analysis  was  carried  out  for  the  best overall  perform-
ing  ML  model:  the CEGB  estimator.  A summary  plot displaying
the  features’  influences  on  the model’s  predictions  is  shown
in  Fig.  1,  whose  interpretation  is:  first,  the most  important
variable  for  the model  is  a  low  level of  consciousness,  which
means  in  Glasgow  scale  a  value  less  than  13. A value  of  1
(presence)  for said  variable  greatly  influences  the  model  to
predict  ICA.  Second,  the most  influential  quantitative  varia-
bles  are  haemoglobin,  blood  glucose,  blood  urea,  SBP,  heart
rate,  blood  creatinine  and  age.  In the case  of  haemoglobin
and SBP,  low  values  tend  to  be  predictive  of  ICA  and  high
values  tend  to  be  predictive  of  no  ICA. The  association  is
opposite  for  blood  glucose,  blood  urea,  heart  rate,  blood
creatinine  and  age.  Third,  regarding  the antecedents,  the
most  influential  are  hypertension,  ischemic  heart  disease,
smoking  and chronic  obstructive  pulmonary  disease.  The
presence  of  these  features  is predictive  of  ICA,  although
their  absence  is  not particularly  predictive  of  no ICA.  Fourth,
the  least  influential  variables  in the  dataset  are  antecedents
of  dialysis,  liver  failure,  haematological  cancer  and  solid

cancer.  Note,  however,  that  the presence  of  such conditions
is  infrequent  in the  dataset.

Discussion

With  the advancement  of  EHR  and  BDA,  ML algorithms  have
become  widely  used tools for individualised  medicine  to  help
decision  making.30---32 The  different  predictive  models  used
so  far  in literature  to  predict  cardiac  arrest  differ  in  several
aspects  such  as  architecture,  processing  and  learning  meth-
ods,  exclusion  criteria  and  alarm  response  times.  Besides,
few  studies  have  been focused  specifically  on  episodes  of
ICA.  Hong  et  al.16 developed  a cardiac  arrest  prediction
model  in  the  ED  using  ML  and  sequential  characteristics,
and  it  was  validated  for  clinical  usefulness.  Yet,  in  that
model,  missing  demographic  data  or  delayed  reporting  times
for  laboratory  tests  may  reduce  predictive  performance.
It  also  presented  a  limited  number  of  predictor  variables,
although  with  high  compliance.10,33 In  contrast,  this  report
describes  the development  and  evaluation  of several  predic-
tive  models  based  on ML  algorithms,  integrating  a larger  set
of  demographics,  clinical  and  laboratory  variables,  as  well
as  personal  antecedents  and comorbidities  of  the patients.
Some  resulting  ML  models  manage  to  distinguish  the cases
of  cardiac  arrest  and  no  cardiac  arrest  with  a high  level  of
success,  reaching  an AUC  of  90%, and  accuracies,  recalls
and  precisions  of  above  80%.  These  metrics  show, on  the
one  hand,  that  the  great  majority  of  both  healthy  and ICA
patients  can be identified  as  such  by  the ML  models;  on  the
other,  the  predictions  of these ML models  can be  trusted
as  correct  with  high  probability.  This  is  a  remarkable  per-
formance  for  such  a complex  problem,  both  because  of  the
nature  of  the  target  variable  (occurrence  of  cardiac  arrest
one  day  in  advance),  and because  of  the limitations  of  the
dataset  (small  volume  of patients  and  some  variables  with
many  missing  values).  Furthermore,  some  of  the  ML  models
clearly  outperform  a traditional  scoring  system  like  MEWS.

The  use  of SHAP  in this  study  provides  an  insight  on  the
relevant  associations  between  predictor  variables  and  the
occurrence  of ICA.  Among  the  clinical  variables,  the most
influential  to  predict  an ICA  are a low level of  consciousness,
low  haemoglobin,  high  glucose  and  urea  levels,  low  systolic
blood  pressure,  and high  heart  rates,  creatinine  levels  and
ages.  Comparing  with  existing  studies,  such as  the  one  by
Sun  et al.,15 respiratory  rate, bicarbonate  concentration,
oxygen  saturation  and  age  had  been  the most  relevant  to
predict  mortality.  Other  studies  that  only analysed  vital  signs
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Figure  1  SHAP  summary  plot  with  the  aggregated  SHAP  values  generated  in each  iteration  of  the cross-validation.  SHAP  analysis

was carried  out  for  the  CEGB  estimator.  Each cloud  of  points  represents  the  data  points  of  the  aggregated  test  splits among  the

iterations  of  the  cross-validation.  The  horizontal  axis  shows  the  SHAP  values  assigned  to  every  data  point.  If  the magnitude  is  higher,

the influence  is greater.  If  the  value  is  positive,  the  influence  is  positive  (induces  to  predict  cardiac  arrest).  If  it  is  negative,  such

is the  influence  (induces  to  predict  no  cardiac  arrest).  As  there  is a  SHAP  value  assigned  to  every  variable  of  every  data  point,  the

clouds are  grouped  by  variable.  The  variables  are  sorted  in  a  descending  overall  importance  ranking.  The  overall  importance  of  a

variable is  established  by  the  average  magnitude  of  its  SHAP  values  among  all  the  data  points.  Finally,  the  colour  of  each  point  in  a

cloud represents  the  original  value of  the  variable  of  such  point.  If the  variable  has a  low  value  in  a  data  point,  such  point  will  be

coloured in  blue  in  the cloud  of  the  variable  in question.  Inversely,  if  the  original  value  is high,  the  colour  will be  red.

found  heart  and  respiratory  rates to  be  the most influential34

for  deterioration  prediction.  On  another  note,  few  ML-based
predictive  tools  include  personal  antecedents  and  comor-
bidities.  In this analysis,  the  influences  of  the presence  of
hypertension,  IHD,  smoking  and  CPOD  stand  out  to  predict
ICA.  However,  these  variables  are conventionally  extracted

by manual  means.  To  generate  on-line predictions  with  a  ML
model,  they  should  be  extracted  in a  structured  way  instead.

Another  important  issue  is  the  prediction  horizon.  In
2022,  the Su et  al’s study34 only  evaluated  vital  signs  48  hours
before  the  event,  while  in  the studies  by  Kwon  et  al.18 and  by
Cho  et  al.,10,33 age  and  vital  signs were  validated  24  hours
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prior  cardiac  arrest.  Our  study  also  describes  the  predic-
tion  of  ICA  24  hours  in  advance,  so  that  that the medical
staff  can  have  enough  time  to  intervene  when  using an EWS
that  embeds  the  model.  It is  very  important  for the  rapid
response  team  to  have  the  information  before  an ICA  occurs:
the  faster  cardiopulmonary  resuscitation  is  conducted,  the
higher  the  probability  of patient  survival.

There  are  several  limitations  in  this analysis.  First,  it is
a  retrospective  study  with  a small  sample  size, coming  from
a  single  centre  and  from  a span  of  14  years.  During  this
period,  there  may  be  heterogeneity  when  recording  physio-
logical  constants  in the computer  system,  therefore  results
may  not  be generalised.  Thirdly,  the  lack  of measurement
of  the  response  time  of the  doctor  on  duty  to  the alteration
of  the  physiological  constants  may  bias  the time  from  the
records.  Fourthly,  it remains  to  analyse  treatments  before
ICA.  These  questions,  together  with  the promising  results
from  this  study,  would justify  the execution  of  a prospec-
tive  analysis,  where  a  final  model  would  be  constructed
and  trained  with  the complete  dataset,  and  its  predic-
tions  would  be  compared  with  reality  to ratify  its  predictive
capability.

Conclusion

The  CEGB  ML  model presented  the  best  performance  and  its
most  predictive  variables  of  ICA  24  hours  before  the event
were  examined.  The  obtained  results  encourage  the  prolon-
gation  of  the  study  with  a future  prospective  analysis,  in
which  the  model  would  be  run in  real-time  in the hospital
and  its  performance  validated,  together  with  its  most  influ-
ential  predictors.  ML,  applied  to  the prediction  of  ICA,  may
help  physicians  act quickly  and  enhance  the prognosis  of the
patient.
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