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Abstract
Objective:  To  determine  if  potential  predictors  for  invasive  mechanical  ventilation  (IMV)  are
also determinants  for  mortality  in COVID-19-associated  acute  respiratory  distress  syndrome
(C-ARDS).
Design:  Single  center  highly  detailed  longitudinal  observational  study.
Setting:  Tertiary  hospital  ICU:  two  first  COVID-19  pandemic  waves,  Madrid,  Spain.
Patients or  participants:  :  280 patients  with  C-ARDS,  not  requiring  IMV  on  admission.
Interventions:  None.
Main  variables  of interest:  :  Target:  endotracheal  intubation  and  IMV,  mortality.

Predictors:  demographics,  hourly  evolution  of  oxygenation,  clinical  data,  and  laboratory
results.
Results: The  time  between  symptom  onset  and  ICU  admission,  the  APACHE  II  score,  the  ROX
index, and procalcitonin  levels  in blood  were  potential  predictors  related  to  both  IMV  and
mortality. The  ROX  index  was  the  most significant  predictor  associated  with  IMV,  while  APACHE
II, LDH,  and  DaysSympICU  were  the  most  with  mortality.
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Conclusions:  According  to  the  results  of  the analysis,  there  are significant  predictors  linked
with IMV  and  mortality  in C-ARDS  patients,  including  the time  between  symptom  onset  and ICU
admission, the  severity  of  the  COVID-19  waves,  and  several  clinical  and laboratory  measures.
These findings  may  help  clinicians  to  better  identify  patients  at  risk  for  IMV  and  mortality  and
improve their  management.
© 2023  Elsevier  España,  S.L.U.  and  SEMICYUC.  All  rights  reserved.
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Predictores  de ventilación  mecánica  y mortalidad  en  pacientes  críticos  con  neumonía
por  COVID-19

Resumen
Objetivo:  Determinar  si las  variables  clínicas  independientes  que  condicionan  el  inicio  de ven-
tilación mecánica  invasiva  (VMI)  son  los  mismos  que  condicionan  la  mortalidad  en  el síndrome
de distrés  respiratorio  agudo  asociado  con  COVID-19  (C-SDRA).
Diseño:  Estudio  observacional  longitudinal  en  un  solo  centro.
Ámbito: UCI,  hospital  terciario:  primeras  dos  olas  de COVID-19  en  Madrid,  España.
Pacientes  o  participantes: 280  pacientes  con  C-SDRA  que  no requieren  VMI  al  ingreso  en  UCI.
Intervenciones:  Ninguna.
Principales  variables  de interés: Objetivo:  VMI  y  Mortalidad.

Predictores:  demográficos,  variables  clínicas,  resultados  de  laboratorio  y  evolución  de  la
oxigenación.
Resultados:  El tiempo  entre  el  inicio  de los  síntomas  y  el  ingreso  en  la  UCI,  la  puntuación
APACHE II,  el índice  ROX  y  los  niveles  de procalcitonina  en  sangre  eran  posibles  predictores
relacionados tanto  con  la  IMV  como  con  la  mortalidad.  El índice  ROX  fue el  predictor  más
significativo  asociada  con  la  IMV,  mientras  que  APACHE  II, LDH  y  DaysSympICU  fueron  los  más
influyentes  en  la  mortalidad.
Conclusiones:  Según  los  resultados  obtenidos  se  identifican  predictores  significativos  vinculados
con la  VMI  y  mortalidad  en  pacientes  con  C-ARDS,  incluido  el  tiempo  entre  el  inicio  de los
síntomas  y  el  ingreso  en  la  UCI,  la  gravedad  de  las  olas  de  COVID-19  y  varias  medidas  clínicas  y
de laboratorio.  Estos  hallazgos  pueden  ayudar  a  los  médicos  a  identificar  mejor  a  los  pacientes
en riesgo  de  IMV  y  mortalidad  y  mejorar  su manejo.
© 2023  Elsevier  España,  S.L.U.  y  SEMICYUC.  Todos  los  derechos  reservados.

Introduction

Invasive  mechanical  ventilation  (IMV)  is  a cornerstone  of
organ  support  in severe  COVID-19  patients  with  acute  respi-
ratory  distress  syndrome  (ARDS).  As  widely  experienced  in
ICUs  during  the SARS-CoV-2  pandemic,  IMV  frequently  causes
complications.1,2 Hospital  services  were  overwhelmed  not
only  by  the  surge  of  patients,  but  also  by  scarce  human
resources  and  equipment,  lack  of sufficient  mechanical  ven-
tilators  being  probably  the most  relevant.  In  surge  scenarios,
appropriate  triage strategies  are therefore  needed  to  allo-
cate  IMV  or alternatives  such as  high  flow  nasal  prongs.  These
strategies  should  be  based  on  the knowledge  and  under-
standing  of  specific  potential  predictors3 that  could  help
clinicians  to  personalize  decisions  regarding  IMV.

There  is  still  considerable  controversy  regarding  who  and
when  to intubate.  Several  recent  studies  have  addressed  the
subject,4 although  bias  cannot  be  excluded  in observational
non-randomized  trials.  A retrospective  study  suggested  that
early  intubation  and IMV is  associated  with  favorable  out-

comes  but  included  only  intubated  patients  instead  of  the
whole  population  at risk.

Previous  studies  have  identified  covid-19  progression
predictors  including  age,  comorbidities,  renal  function,  or
immunodeficiency5 using traditional  statistical  approaches,
where  collinearity  of  data  cannot  be ruled  out.  Artifi-
cial intelligence  (AI)  is  currently  being used  for  COVID-19
risk  stratification,6 studying  multiple  clinical  features  to
increase  effectiveness  and efficiency  in diagnosis,  treat-
ment,  and prognosis.  Self-explainable  Machine  learning  (ML)
techniques  can  help  with  risk  factor  selection  through
ranking  methodologies.7 In this  context,  the utilization  of
artificial  intelligence  (AI)  holds  potential  in facilitating  the
development  of  a  conceptual  model  aimed  at  comparing  the
significance  of  variables.  This  can  be  achieved  by  employ-
ing  regularization  models8 to  enhance  predictor  selection,
followed  by  the implementation  of  the Generalized  Lin-
ear  Mixed-effects  Model  (GLMM)9---11 to  construct  the  said
conceptual  model.  Such  an approach  becomes  particularly
relevant  when  assessing  and comparing  outcomes  across  dif-
ferent  AI  models,  enabling  a  comprehensive  evaluation  of
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variable  significance.  This  is  a  novel  methodology,  leverag-
ing  modern  machine  learning  techniques  to  provide  rigorous
and  applicable  insight  into  relevant  clinical  questions  when
randomized  clinical  trials  are not feasible.  From  here  on, in
this  paper,  we aim  to  determine  if potential  predictors  for
invasive  mechanical  ventilation  (IMV)  are also  determinants
for  mortality  in COVID-19-associated  acute  respiratory  dis-
tress  syndrome  (C-ARDS)  while  comparing  the  significance  of
variables  in both cases.

Patients and  methods

Selection  and  description  of  patients

In  our  retrospective  observational  study,  we  have  collected
and  curated  data  from  our  electronic  medical  records  (EMR)
from  March  3rd  of  2020  through  February  28th  of  2021. We
selected  patients  admitted  to  our  ICU  at San  Carlos  Hospital
(HCSC)  in  Madrid  (Fig.  1 ) but  were initially  not  mechanically
ventilated.  The  selection  of  patients  considered  just  COVID-
19  pneumonia  patients,  incidental  COVID-19  was  excluded.
The  age  range  for  inclusion  was  restricted  to  individuals  aged
18  years  or  older.

The  database  comprises  hourly  data  points  for  each
patient  during  the  first  five  days.  Afterwards,  we utilized
multi-stage  machine  learning  algorithms  to  assess  the most
significant  variables  in predicting  invasive  mechanical  ven-
tilation  (IMV)  and  ICU  mortality  (Fig.  2).  It  is worth  noting
that  28-day  mortality,  while  frequently  used  in large  studies
like  RECOVERY,  may  not  be  a suitable  outcome  measure  in
COVID-19  patients  due  to the possibility  of  delayed  mortal-
ity.

All  data  were  registered  in  our  electronic  medical  record
(ICCA  Philips).  A total  of 12,163  longitudinal  sets  of  hourly
clinical  and  lab  data  were  gathered.  Longitudinal  sets  are
grouped  in clustered  events  associated  with  patients.  Each
entry  contains  demographics  data,  first  or  second  wave
admission,  time  elapsed  from  start  of symptoms  to  O2  ther-
apy  and  ICU  admission,  APACHE  II score,  monitoring,  blood
gases  and  therapy-related  data.  We  discarded  variables  with
more  than  33%  of  missing  values  for  consistency.  We used
mode  imputation  or  mean  imputation  to complete  missing
values  of  the  remaining  variables.  Tables  1 and  2 show the
predictors  that  were  finally  used  for  the  purposes  of  the
study.

Data  were  anonymized,  excluding  demographic  or  tem-
poral  information.  The  study  protocol  was  approved  by
the  local  ethics  committee  (approval  code  22/007-E),  who
waived  the  need  for  informed  consent  due  to  the retrospec-
tive  non-interventional  nature  of  the study.

Methods  and  techniques

Data  collected  as  described  above  were  used  to fit the
model12 following  four steps  for  the whole  process,  as shown
in  Fig.  2.  Considering  that  our  data  involve  a  concatenation
of  longitudinal  data  for  each patient  in different  events,
it  was  necessary  to  identify  correlations  within  the cluster
when  trying  to  build  an  accurate  prediction  model.10

Figure  1 COVID-19  patients  admitted  during  first  and  second
pandemic waves.  The  cohort  comprises  280  severe  COVID-19
patients  admitted  to  the  ICU  Department  at HCSC  in Madrid,
Spain,  between  March  3, 2020,  and  February  28,  2021.  Dur-
ing this  time  period,  SARS-COV-2  wild-type  and  subsequently
alpha variants  were  prevalent  in Spain.  Over  the  study  time
period  4229  covid-19  patients  were  admitted  to  HCSC,  405  of
whom required  ICU  admission  (first  wave:  153,  second  wave:
252 patients).

The  different  regression  approaches  to  select  poten-
tial  predictors  for  IMV and  ICU  mortality  risk  tested
were:  LASSO,13 Ridge,14 Elastic-net,15 Boruta16 and  R-Part.17

LASSO,  Ridge and Elastic-net  perform  an automatic  predic-
tor  selection  supported  by  L1  and L2  regularization  terms18

that minimizes  the risk  of  overfitting,  reducing  variance  and
reaching  an  attenuation  effect  over  the correlation  between
features.  Boruta19 is  a  feature  selection  model  based  on  a
Random  Forest algorithm  that  selects  all  the  risk  predic-
tors  that are relevant  for  classification  purposes  defined  as
all-relevant  problems.  R-Part17 builds a classification  model
based  on  binary  trees. R-Part varImp  function20 identifies
the  effect  of  model predictors  based  on  the  loss  function
mean  squared  error.  In any  case,  potential  predictors  have
been  analyzed  and  confirmed  or  rejected  based on  clinical
criteria.
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Figure  2  Methodology  for  fitting  the  machine  learning  algorithms.  In  a  previous  stage,  Figure  5 in  Supplementary  material  shows
the complete  workflow,  from  the  cohort  selection  according  to  clinical  needs  to  the  implementation  of  the  algorithms  that  have
been included  in the  explanation.  The  first  step  involves  the  cohort  selection  as  well  as  the  initial  group  of  variables  considered  in
this study,  The  second  step consists  in the implementation  of  a  statistical  study  of  each  variable.  This  step  also  involves  correlation
(Figure 6  in Supplementary  material)  imputation  and  transformations  procedures  in  order  to  dispose  of the  most  accurate  data
in the  following  steps.  The  third  step  analyzed  the  most  significant  predictors  based  on  five  Machine  Learning  (ML)  techniques
linked with  regression  analysis  based  on  10-fold  cross-validation  regressions.  The  fourth  and  last  step identifies  the behavior  of  each
predictor attending  to  different  proposes.  The  first  one  is  related  to  mechanical  ventilation  needs  attending  to  different  settings
in the  Generalized  Linear  Mixed  Model  (GLMM)  Tree  (depth  of  layers)  looking  for  the  best balance  between  performance  (Akaike
Information  Criterion  (AIC),  Bayesian  information  criterion  (BIC),  Area  Under  the  Roc  Curve  (ROC)  and  more  parameters  within  the
table III)  and explainability  of  the model.  The  second  one  is  related  to  the  most  representative  mortality  predictors  but  following
the same  balance  objective.

After  identifying  the optimal  set  of  potential  predic-
tors  (Figure  10---14  in Supplementary  material),  clustering
effects  by  patient  and  temporal  distribution,  as  well  as
cutoff  points  of  the  significant  variables  and  their inter-
actions  were  assessed  with  GLMM  Trees.9---11 To  build  these
trees,  we  took  the  entire  dataset  into  account,  grouping
data  by  patient  and  data  charting  time  as  random  varia-
bles  to  fit  the model.12 This  fitting  methodology  avoids  both
over  and  underfitting  effects  that  could  impact  the model’s
performance.21 Models  were  implemented  based on  a 10-
fold  cross  validation  strategy  using  a  four-depth-of-layers
(full,  5,  10 and  20)  strategy.  This  means  the fitting proce-

dure was  executed  ten  times  per  algorithm  implementation.
It’s  necessary  to  remark  that  the positive  class  for  the inva-
sive  mechanical  ventilation  (IMV)  variable  refers  to  cases
where  IMV is  required,  while  the positive  class  for  the  ICU
mortality  variable  is  related  to  cases  where  patients  die.  It is
worth  mentioning  that  the focus  of  the  study  is  on  identifying
independent  variables  and their  associated  thresholds  with
IMV  and ICU  mortality,  without  defining  specific  categories
to  predict.

We  used a  GLMM  Tree  to  build  conceptual  models  that
explain  the association  between  the potential  predictors
and  the  two  outcome  variables.  This  algorithm  accounts  for
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Table  1  Group  of  predictors  for  Invasive  Mechanical  Ventilation  regression  purposes.

Dataset clinical and biochemical characteristics

Invasive Mechanical Ventilation (IMV)

Variable N Overall, N = 12,163a Invasive Mechanical Ventilation (IMV) p-valueb

No, N =  9093a Yes, N = 3070a

Age, years, Median (Q1-Q3) 12,163 59  (51---68) 58 (50---67) 63 (54---70) <0.001
Gender, n (%) 12,163 <0.001

Male  8032 (66) 5649 (62) 2383 (78)
Female  4131 (34) 3444 (38) 687 (22)

Ethnicity, n  (%) 12,163 <0.001
Amerindian 4671 (38) 3625 (40) 1046 (34)
Arab  545  (4.5) 468 (5.1) 77 (2.5)
Spanish  6427 (53) 4591 (50) 1836 (60)
Others  520  (4.3) 409 (4.5) 111 (3.6)

Wave, n (%) 12,163 <0.001
First  1490 (12) 766 (8.4) 724 (24)
Second 10,673 (88) 8327 (92) 2346 (76)

Body mass index, Median (Q1---Q3) 12,163 27.8 (26.0---31.1) 27.8 (26.0---31.2) 27.7 (26.0---29.4) 0.70
Heart  rate, median bpm (IQR) 12,163 73  (65---84) 73 (64---83) 76 (67---87) <0.001
Temperature in

o
C, Median (Q1---Q3) 12,163 36.80 (36.50---37.10) 36.73 (36.44---37.02) 36.97 (36.64---37.37) <0.001

Arterial  pressure in mmHg, Median (Q1---Q3) 12,163 87  (79---95) 87 (80---95) 87 (78---95) <0.001
Lactate  in mEq/l, Median (Q1---Q3) 12,163 1.42 (1.20---1.70) 1.42 (1.14---1.65) 1.50 (1.33---1.80) <0.001
Procalcitonin, ng/mL Median (Q1---Q3) 12,163 0.13 (0.08 --- 0.23) 0.13 (0.07 --- 0.20) 0.14 (0.13 --- 0.35) <0.001
Eosinophile count per cubic mm, Median (Q1---Q3) 12,163 4  (0---20) 4 (0---22) 4 (0---13) 0.011
C  reactive protein, mg/L Median (Q1---Q3) 12,163 8  (6---11) 8 (4---10) 8 (8---15) <0.001
Alkaline  phosphatase U/L, Median (Q1---Q3) 12,163 82  (68---101) 82 (65---99) 82 (76---104) 0.006
Total  bilirubin mg/dL, Median (Q1---Q3) 12,163 0.53 (0.44 --- 0.62) 0.53 (0.42 --- 0.59) 0.53 (0.51 --- 0.71) <0.001
Oxygenation index (ROX Index), Median (Q1---Q3) 12,163 5.93 (4.52---7.92) 6.18 (5.22---8.67) 4.46 (3.62---5.93) <0.001
Creatinine, mg/dL Median (Q1---Q3) 12,163 0.67 (0.59---0.78) 0.67 (0.58---0.77) 0.67 (0.65---0.82) <0.001
Leukocyte count per mm3, Median (Q1---Q3) 12,163 8925 (7160---10,804) 8925 (6857---10,548) 8925 (8400---11,478) <0.001
Hemoglobin  g/l, Median (Q1---Q3) 12,163 13.16 (12.28---13.96) 13.16 (12.20---13.93) 13.16 (12.63---14.03) <0.001
Amylase  U/L, Median (Q1---Q3) 12,163 63  (50---79) 63 (51---84) 63 (48---64) <0.001
Lactate  dehydrogenase, Median (Q1---Q3) 12,163 882  (749 --- 1038) 882 (682---964) 939 (882---1172) <0.001
Lymphocyte count per mm3, Median (Q1---Q3) 12,163 829  (638---1049) 829 (657---1148) 829 (570---871) <0.001
AST  (Aspartate Aminotransferase) U/L, Median (Q1---Q3) 12,163 45  (34---60) 45 (34---63) 45 (33---54) <0.001
Hours  from ICU admission to this register, Median
(Q1---Q3)

12,163 31  (14---50) 33 (16---51) 23 (9---45)  <0.001

APACHE  (Acute Physiology and Chronic Health
Evaluation) II, Median (Q1---Q3)

12,163 13.0 (10.0---17.0) 12.0 (10.0---16.0) 15.0 (13.0---17.0) <0.001

Days  from first symptoms to O2 therapy, Median (Q1---Q3) 12,163 7.00 (6.00---8.00) 7.00 (6.00---8.00) 7.00 (6.00---8.00) 0.008
Days  from first symptoms to ICU admission, Median
(Q1---Q3)

12,163 9.0  (8.0---11.0) 9.0 (8.0---11.0) 9.0 (7.0---13.0) <0.001

Arterial  pH, Median (Q1---Q3) 12,163 7.43 (7.41---7.45) 7.43 (7.41---7.46) 7.43 (7.39---7.44) <0.001
Arterial  pCO2, Median (Q1---Q3) 12,163 38.1 (35.7---41.0) 38.1 (35.6---40.7) 38.4 (36.0---42.4) <0.001
Type  of blood sample, n  (%) 12,163 <0.001

Arterial  696  (5.7) 496 (5.5) 200 (6.5)
BLDO (Capillary blood gas analysis) 5  (<0.1) 5 (<0.1) 0 (0)
Arterial 91  (0.7) 27 (0.3) 64 (2.1)
Mixed  28  (0.2) 28 (0.3) 0 (0)
Venous 1405 (12) 931 (10) 474 (15)
Venous 9845 (81) 7529 (83) 2316 (75)
Mixed  venous 93  (0.8) 77 (0.8) 16 (0.5)

Blood  gas sat. O2, Median (Q1---Q3) 12,163 85  (75---91) 85 (77---91) 84 (72---89) <0.001
Corticosteroid dose, first 5 days of admission (mg of
equivalent methylprednisolone dose), Median (Q1---Q3)

12,163 36  (30---60) 36 (30---60) 36 (30---78) 0.32

Melatonin dose in mg/day, n (%)  12,163 0.001
0  4545 (37) 3445 (38) 1100 (36)
50  3886 (32) 2922 (32) 964 (31)
100  2167 (18) 1617 (18) 550 (18)
200  1565 (13) 1109 (12) 456 (15)

D  dimer, ng/mL Median (Q1---Q3) 12,163 1031 (862---1263) 1031 (804---1232) 1031 (1031---1416) <0.001

This group of  predictors will be applied in the  selection procedure linked with the five regression algorithms: Ridge, LASSO, Elastic,
Boruta and R-part Based on  the reached results, the group of predictors are going to be reduced attending to its behavior related to IMV
needs. Figures 7---11 (Supplementary material) shows the results from each regression procedure where R-Part was finally selected due
to its good balance between model performance and explicability of  results.
Data updated June 22, 2023.

a Median (Q1---Q3) or  Frequency (%).
b Welch Two Sample t-test; Pearson’s Chi-squared test.
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Table  2  IMV  Results.  Group  of  predictors  used  for  mortality  prediction  with  GLMM  tree  algorithm.

Dataset  variables  statistical  characteristics

ICU  mortality

Variable  N  Overall,  N  = 12,163a Mortality  p-valueb

Alive,  N  = 9777a Died,  N  =  2386a

Days  elapsed  from  first  symptoms  to  ICU
admission,  Median  (Q1---Q3)

12,163  9.0  (8.0---11.0)  9.0  (8.0---11.0)  9.0  (7.0---13.0)  <0.001

APACHE (Acute  Physiology  and  Chronic
Health  Evaluation)  II,  Median  (Q1---Q3)

12,163  13.0  (10.0---17.0)  12.0  (10.0---16.0)  15.0  (13.0---17.0)  <0.001

Corticosteroids  administered  during  the
first 5d  of  admission  as  mg  of  equivalent
methylprednisolone  dose,  Median
(Q1---Q3)

12,163  36  (30---60)  36  (30---60)  36  (30---80)  <0.001

Oxygenation  index,  Median  (Q1---Q3)  12,163  5.93  (4.52---7.92)  5.93  (4.95---8.42)  4.58  (3.63---5.93)  <0.001
Serum Lactate  dehydrogenase,  U/L
Median  (Q1---Q3)

12,163  882  (749  ---  1038)  882  (695---964)  1026  (882---1279)  <0.001

Body mass  index,  Median  (Q1---Q3)  12,163  27.8  (26.0---31.1)  27.8  (26.0---31.8)  27.8  (26.0---29.4)  <0.001
Temperature  in oC,  Median  (Q1---Q3)  12,163  36.80  (36.50---37.10)  36.78  (36.50---37.10)  36.86  (36.50---37.20)  <0.001
Days elapsed  from  first  symptoms  to  O2
therapy,  Median  (Q1---Q3)

12,163  7.00  (6.00---8.00)  7.00  (6.00---8.00)  7.00  (6.00---7.00)  0.073

Total bilirubin  mg/dL,  Median  (Q1---Q3)  12,163  0.53  (0.44---0.62)  0.53  (0.42---0.60)  0.53  (0.51---0.68)  <0.001
Wave, n  (%)  12,163  <0.001
First 1490  (12)  1031  (11)  459  (19)
Second 10,673  (88)  8746  (89)  1927  (81)
Lymphocyte count  per  mm3,  Median
(Q1---Q3)

12,163  829  (638---1049)  829  (667---1120)  800  (499---886)  <0.001

Arterial pH,  Median  (Q1---Q3)  12,163  7.43  (7.41---7.45)  7.43  (7.41---7.46)  7.43  (7.38---7.45)  <0.001
C reactive  protein  levels  mg/L,  Median
(Q1---Q3)

12,163  8  (6---11)  8 (5---10)  8  (8---14)  <0.001

Hours from  ICU  admission  to  this
register,  Median  (Q1---Q3)

12,163  31  (14---50) 31  (14---51)  28  (11---47)  <0.001

Data updated June 22, 2023.
a Median (Q1---Q3) or Frequency (%).
b Welch Two Sample t-test; Pearson’s Chi-squared test.

data clusters  and  temporal  characteristics  of  the dataset,
utilizing  a  mixed-effect  strategy  to  combine  the potential
predictors  that  influence  the outcome  variables.  Addition-
ally,  the  algorithm  provides  a cut-off  value for variables,
allowing  for comparison  with  clinical  experience.

GLMM  Tree  performance  metrics  were  Area  Under  the
Curve  of  Sensibility-Specificity  (AUC),  the Akaike  Informa-
tion  Criterion  (AIC)  and the Bayesian  Information  Criterion
(BIC),22 as  well  as  the deviance,  the  likelihood  statistical,23

and  the  sensitivity  and specificity  parameters.  All the  regres-
sion  and  GLMM  Tree  models  were  fitted  with  the  same  subset
of  variables  shown  in  Table  1.

We used  both  regressions  and  GLMM  family  trees  to
gain  a  wider  understanding  of  potential  predictors  for  IMV
and  ICU  mortality.  This  combined  approach  offers  more
intuitive  decision-making  compared  to  black-box  model-
ing  strategies.  We  assessed  each predictor’s  effectiveness

and  used the  same  set  of  variables  (Table  2)  to  build  an
ICU  mortality  model  for  the entire  cohort.  The  study’s
anonymized  database  and  scripts  can  be found  on  the associ-
ated GitHub  repository.24 The  database  will be  published  in
PhysioNet25 project  in  order  to  disseminate  and  exchange
the  anonymized  clinical  records  looking  for cooperative
project  replication.

Results

Patient  characteristics

The  complete  cohort  consisted  of 280  patients  who  were
included  in the  study.  A total  of  154  patients  (55  %)  required
IMV  after ICU  admission  (Fig.  1),  65  of 80  patients  (81.2  %)
during  the first  and 89  of  200 patients  (44.5  %)  during  the
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second  wave.  ICU  mortality  of  the  whole  cohort  was  25.7%
(72  of  280  patients),  33.7%  (27  of  80  patients)  during  the
first  and  22.5%  (45 of  200  patients)  in the  second  wave.
Table  2  shows  IMV  and  ICU  mortality  predictors  for  the whole
patient’s  cohort.  Mean  registers  per  patient  was  43.4,  for  a
total  of  12,163  hourly  registers  in the  whole  database  (Figure
12  in complementary  material).

Significance  of  predictors

R-Part  classification  achieves  the  best and  most clinically
plausible  results  in  selecting  the twelve  most  representative
predictors  for  IMV and  ICU  mortality  from  the whole  group
of  available  potential  predictors  (Table 2). Concerning  this
subset  of  predictors,  the  final  selection  is  based  on  decreas-
ing  order  of  importance,  according  to  results  reached  by
the  loss  function  (mean  squared  error),  scaled  from  0  to
100  points.  Taking  into  account  this  premise,  the  predictors
are:  days  from  first  symptoms  to  ICU  admission  (100),  the
APACHE  II  score  (92.25),  the oxygenation  index,  ROX index
(72.46),  blood  procalcitonin  (69.59),  serum  lactic  dehydro-
genase  (54.45),  total  serum  bilirubin  (36.54),  the  COVID-19
wave  (31.18),  the dose  of  corticosteroids  administered  dur-
ing  the  first  five  days  of  admission  (30.96),  lymphocyte
count  (15.57),  pH  (13.29),  BMI  (12.76),  C-reactive  protein
(12.74),  time  to  oxygen  therapy  (12.42)  and  body  tempera-
ture  (10.82).

Modeling  performance

In  Table  3,  the  performance  of  the  IMV  model  is presented.
The  R-part  predictors  Regression-GLMTREE  pair achieved  the
highest  performance  with  an  AUROC  of  0.87,  as  shown  in Fig-
ure  8 in  the  Supplementary  material.  Additionally,  the  ICU
mortality  model  performed  well,  with  an AUROC  of  0.88,
as  demonstrated  in Figure  9 in the Supplementary  mate-
rial.  The  IMV  likelihood  ratio  (RV+  3.16,  RV-  0.177)  suggests
that  the  test  result  is  moderately  useful  for identifying  or
discharge  patients  susceptible  to  being  treated  with  IMV.
Related  to  the CI (95%),  the reached  interval  (0.918  and
0.928)  suggests  a high  level of  precision  considering  the
sensitivity,  specificity,  and  accuracy  of  the model.  Related
to  ICU  mortality,  the IMV  likelihood  ratio  (RV+  5,105,  RV−

0.424)  and  CI  (95%)  interval  (0.817  and 0.833),  results  are
also  moderately  useful.  Fig. 3  illustrates  the  ICU Mortality
decision  tree,  while  Figure  7  in the  Supplementary  material
presents  the  IMV  decision  tree.  The  optimal  cut-off  point for
the  prediction  model  was  determined  based on  the  IMV and
ICU  mortality  AUC,  using  Youden’s  Index,26 which identifies
the  point  of  maximum  sum of  sensitivity  and  specificity  in
ROC  curve  analysis.

The  trees  in Figures  6  and 7 of  the Supplementary  mate-
rial  indicate  that  oxygenation  status  (ROX  index)  has  the
most  significant  influence  on  IMV,  with  a threshold  near  5.2.
On  the  other  hand,  ICU mortality  is  mainly  influenced  by

comorbidities  (APACHE  II score) and  LDH,  as  revealed  by  the
same  trees.

Discussion

The  results  of  the present  study  include  some  highly  rele-
vant  clinical  results.  First,  the  variable  sets  predicting  IMV,
and  ICU  mortality  are different.  Whereas  oxygenation  varia-
bles  are independent  predictors  of  IMV,  ICU  mortality  is
associated  with  increased  age  and  LDH  and  the  presence
of  comorbidities.  The  latter  variables  may  be  considered
markers  of  two  processes:  COVID-19-associated  inflamma-
tion  and  ICU-acquired  superinfection  (see  Figure  4 in the
Supplementary  material).  Secondly,  the characteristics  of
pharmacological  therapy,  including  the administration  of
steroid  drugs,  has  little  influence  on  both  the need  for
IMV  and ICU  mortality,  considering  our  results.  We  included
in  the analysis  64  patients  not  receiving  steroids  and  216
receiving  this  treatment,  at the  usual 6  mg  dexametha-
sone  or  equivalent  daily  dose.  This  is  a remarkable  finding,
because  the  effect  of  steroids  on  mortality  identified  in a
previous  trial27 have  influenced  recommendations,  as  well
as  clinical  practice,  since  its publication.  It  may  be  spec-
ulated  that  the  decision  to  include  and  randomize  or  not
at  the  discretion  of the attending  physicians,  and  based on
undisclosed  criteria,  rendered  different  results  by  selecting
a  study  subset  of  COVID-19  cases  with  different  charac-
teristics.  In  comparison,  no  inclusion-exclusion  criteria  for
selection  process  were  applied  in  our  ‘‘pragmatic’’  type of
cohort.  Steroids  were  given to  almost  every  patient  unless
a  severe  contraindication  existed,  after  the results  of the
RECOVERY  trial  were  made  available.

The  present  study  applied  a  novel  methodology  (logis-
tic regression  with  regularization  plus  GLMM  Tree  mixed
models)  to  evaluate  the relative  importance  of  several
variables  as  predictors  of  significant  clinical  events.  Using
machine  learning  and  a fine-grained  longitudinal  multi-
faceted  database,  we  have  established  relevant  variable
value  thresholds  to  support  clinical  decisions.  Although  the
model  would  perform  quite  well  as  predictor  for  IMV  and  ICU
mortality,  with  good positive  predictive  values,  it is  impor-
tant  to  emphasize  that this  is  not a predictive  model  in
the  classical  sense,  but  an attempt  to  pinpoint  the  most
important  clinical  events  that  represent  turning  points  dur-
ing  the  studied  process  (in  this  case,  clinical  management
of  patients  not  initially  under  IMV).  In  this  sense,  we  should
say  that  the  inclusion  of  the likelihood  ratio  as  an evaluation
factor  for  comparing  performance  model  was  reach  great
results.  However,  following  the  premise  of model  explain-
ability,  we  believe  it is  important  to  take  this  element  into
account  as  a  final  selection  factor  for  the set  of  predictors
that  best  fit daily  clinical  practice.  This  study  demonstrates
that  predictor-ranking  methodologies  using  self-explainable
machine  learning  may  support  therapeutic  decision-making
using  observational  data,  when  randomized  clinical  trials  are
unfeasible  or  unethical.
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Table  3  IMV  Results.

GLMM  (Generalized  Linear  Mixed  Model)  trees  results

Mechanical  ventilation

Regressions  No

Predictors
AUC  C.I(95%)  AIC  BIC  Deviance  Log  Lik  Sensitivity  Specificity  LR+  LR−

Ridge  criteria 25  0.852  0.859−0.872 9263.82  9493.41  9201.82  −4600.91  0.856  0.689  2.75  0.206
LASSO criteria 22  0.852  0.847---0.862 9263.82  94,939.41  9201.82  −4.600.91  0.856  0.852  5.78  0.166
Elastic criteria  20  0.858  0.847---0.862  9111.20  9325.98  9053.20  −4526.60  0.750  0.816  4.07  0.308
Boruta criteria  32  0.897  0.862---0.875  7775.23  8004.82  − −3856.61  0.858  0.800  4.29  0.177
R-Part criteria  13  0.867  0.918---0.928  7830.28  8059.87  7758.28  −3884.14  0.871  0.725  3.16  0.177

The Akaike Information Criterion (AIC) reports the information score of the whole models: the smaller the AIC value, the better the
model fit. AIC is calculated from the number of  independent variables to build the model and the maximum likelihood estimate of the
model (how well the model reproduces the data). The best-fit model according to AIC is the one that explains the greatest amount of
variation using the fewest possible independent variables. Bayesian information criterion (BIC) is another criteria for model selection
that measures the trade-off between model fit and complexity of the model. A  lower AIC or  BIC  value indicates a better fit. The  log-

likelihood (log Lik) value of a regression model is  a way to measure the goodness of fit  for a model. The higher the value of the
log-likelihood, the better a model fits  a dataset. Deviance is a goodness-of-fit metric for statistical models, particularly used for GLMs.
It is defined as the difference between the Saturated and Proposed Models and can be thought as how much variation in the data does
our Proposed Model account for. Therefore, the lower the deviance, the better the model. Sensitivity is the metric that evaluates a
model’s ability to predict true positives of each available category. Specificity is the metric that evaluates a model’s ability to predict
true negatives of each available category. The higher value of  sensitivity would mean higher value of  true positive and lower value of
false negative. For the healthcare domain, models with high sensitivity will be desired. Specificity is the metric that evaluates a model’s
ability to predict true  negatives of each available category. These metrics apply to any categorical model. Specificity is defined as the
proportion of actual negatives, which got predicted as the negative (or true  negative). Specificity is a measure of the proportion of
people not suffering from the disease who got predicted correctly as the ones who are not suffering from the disease. In other words,
the person who is healthy actually got predicted as healthy. The likelihood ratio is often used in statistical hypothesis testing and model
selection to compare the fit of  different models to the observed data. It is also commonly used in  medical diagnostic testing to evaluate
the diagnostic accuracy of a particular test or combination of tests. LR+ (likelihood ratio positive) is a statistical measure used to evaluate
the diagnostic accuracy of  a medical test. It  is the  ratio of the probability of  a positive test  result given the presence of  the disease to
the probability of  a positive test result given the absence of the disease. In other words, the LR+  compares the likelihood of  a positive
test result in patients with the disease versus the likelihood of a positive test  result in patients without the disease. In our case, a high
LR+ indicates that the test  is more accurate at correctly identifying patients how could need IMV, while a low LR+ suggests that the test
is not providing strong evidence for IMV. By the way, LR− compares the likelihood of a  negative test result in patients with the disease
versus the likelihood of  a negative test result in patients without the disease. A  low LR- indicates that the test is more accurate at
correctly identifying patients without the need of IMV, while a high LR- suggests that the test is  not  providing strong evidence for the
absence of IMV. The LR+ and LR− are often used in conjunction with other measures of diagnostic accuracy, such as sensitivity, specificity
to assess the overall performance of  a medical test. It  can help clinicians and researchers determine the optimal use of a particular test
in diagnosing a disease or condition. CI stands for c̈onfidence interval.Ä confidence interval CI is a range of values that is likely to contain
the true value of a population parameter (such as a mean or  a proportion), with a certain degree of  confidence (usually expressed as a
percentage, such as 95% or 99%). A narrower interval indicates greater precision, while a wider interval indicates greater uncertainty.
The exact range of a g̈oodC̈I can vary depending on the context and the specific research question, but typically, a narrower interval
is preferred as it provides a more precise estimate. In the case of the area under the receiver operating characteristic curve (AUROC),
which is commonly used in binary classification problems, a CI that includes a value of 0.5 (indicating no  discrimination between the two
groups) is generally considered to be uninformative. On the other hand, a CI that does not include 0.5 and has a range of, for example,
0.7---0.8, may be considered good, indicating that the model has reasonably good discriminative ability. However, the interpretation of
the AUROC and its associated CI should always be considered in the context of the specific research question and the particular field of
study.

Regarding  with  the  strengths  of  our study,  we  would
like  to  mention  the quantity  and  quality  of the data  set.
Collected  data  have a high  level  of  detail, leveraging  the
power  of  strategically  devised  electronic  health  records
(EHR),  which  include  relevant  information  in a  highly  struc-
tured  and  recoverable  format.  Every  effort  was  made  to
configure  our  EHR  to optimally  gather  all  relevant  infor-
mation  about  COVID-19  patients.  Also,  our anonymized
database  is  available  in the repository  along with  the script
we used  for  statistical  analysis,  is highly  detailed  and

has  been  extensively  curated  to  reflect  temporal  evolu-
tion  and  to  improve  data  quality  as  much  as  possible.  In
any  case,  the collection  of variables  from  Electronic  Health
Records  (EHR)  may  be  biased,  affecting  data  quality.  Age
and  gender  biases  are  possible,  as  well  as  biases  related
to  the  selection  and  measurement  of clinical  variables.
These  biases  can  lead  to incomplete  or  skewed  represen-
tations  of  certain  population  groups  and  may  impact  the
validity  and  generalizability  of research  findings  and  clini-
cal  decision-making.  It  is  important  to  be aware  of these
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Figure  3  ICU  Mortality  Tree  Predictors.  The  predictors  appear  in different  branches  attending  to  their  significance  in  the  predictive
model. Values  in bold  letters  represent  the  registries  per branch.  Values  in red  bold  letters  represent  the percentage  of  registries
with positive  outcome.  The  variable  named  as  ‘‘DAYS  SIMPTONS  ADMISION’’  is  related  with  the  number  of  days  from  first  symptoms  to
ICU admission.  The  variable  ‘‘linf  total’’,  is  related  to  lymphocyte  count  per  mm3.  The  variable  named  as ‘‘dosis  equiv  mpred  5d’’
is related  with  the  corticosteroid  dose,  during  the first  five  days  of  admission  (mg  of  equivalent  methylprednisolone  dose).  The
variable named  as  ‘‘bbTot’’  is  related  with  the  total  levels  of  bilirubin  in blood.  The  variable  names  as  ‘‘ldh’’  is related  to  the
lactate dehydrogenase  serum  level.  The  variable  DAYS  UNTIL  O2  is related  to  the  number  of  days until  the  patient  requires  O2.

biases  to ensure  proper  interpretation  and  use  of  EHR
data.

On  the  other  hand,  the  limitations  of  our  study  results
relate  mainly  to  its  single-centered  nature  and  require
confirmation  in a  multicenter  dataset  to  gain  external
validity.  Our  methodology  would  be  perfectly  suited  for  a
multicenter  study,  including  ‘‘center’’  as  a random  factor
in  the  second  (GLMM  Tree)  part of  the  process.  We  sug-
gest  that  future  research  applying  this methodology  could
focus  on designing  clinical  studies  using  observational  data
to  answer  relevant  clinical  questions  without  the  logistic
requirements  of a randomized  clinical  trial  or  for hypothesis-
generating  purposes.  Furthermore,  when  considering  the
limitations  of using  generalized  linear  mixed  effects  models
(GLMMs)  for  modeling  causation  in critical  care  medicine
research,  it  is  important  to  highlight  the absence  of explicit
causality  assumptions.  GLMMs  primarily  focus  on  associa-
tion  or  correlation  analysis,  lacking  the  ability  to  address
the  assumptions  necessary  for  establishing  causal  relation-
ships.  Specifically,  GLMMs  do  not  provide  frameworks  for  the
identification  of  causal  effects  or  account  for  unmeasured
confounding  variables,  which are crucial considerations
in  causal  inference.  In contrast,  causal  inference  meth-
ods,  such  as  the  potential  outcomes  framework,  explicitly
address  these  assumptions,  offering  a  more  comprehensive
approach  for  investigating  causality.  Therefore,  when  estab-
lishing  causal  relationships  between  variables,  researchers
should  carefully  consider  the limitations  of  GLMMs  and  opt
for causal  inference  methods,  which provide  a more  robust

approach  for  investigating  causality  in critical  care  medicine
research.

In  conclusion,  different  variables  predict  IMV and  ICU
mortality  in  severe  COVID-19  patients,  suggesting  that  the
therapeutic  decision  of  when to use  IMV  has little  impact  on
ICU  mortality.  Our  methodology  is  a  valid  option  to  assess
therapeutic  decisions  using  observational  data  when  ran-
domized  clinical  trials  are not  feasible  or  ethical.
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